scholarly journals First report on the occurrence of a single species cyanobacterial bloom in a lake in Cyprus: Monitoring and treatment with hydrogen peroxide releasing granules

Author(s):  
Eleni Keliri ◽  
Christia Paraskeva ◽  
Angelos Sofokleous ◽  
Assaf Sukenik ◽  
Dariusz Dziga ◽  
...  

Abstract Background: Cyanobacteria are phytoplankton microorganisms, also known as blue-green algae, and an essential component of the food web in all aquatic ecosystems. Excess loads of nutrients into waterbodies can cause their rapid and excessive growth which leads to the formation of cyanobacterial harmful algal blooms (cyano-HABs). Toxic species of cyanobacteria genera excrete into the water a broad range of bioactive metabolites, some of which are known as cyanotoxins. These metabolites can negatively affect the ecosystem, and human and animal health in various ways, thus their presence needs to be closely monitored. This study aimed to monitor a lake at the Athalassa National Forest Park in Cyprus, in order to correlate its trophic condition with its water quality characteristics and identify the key environmental variables driving cyanobacteria blooming and their toxicity. In addition, surface water during the blooming period was collected and used in bench-scale experiments in order to test novel hydrogen peroxide releasing granules as mitigation processes for cyano-HABs.Results: The monitoring lasted throughout 2019 with ten sampling events taking place during this period. Samples were mainly analyzed for phytoplankton community, and various physicochemical parameters: pH, conductivity, salinity, total and dissolved nutrients. Obtained data indicated that cyanobacteria blooming lasted for four months (June – September), while microscopic observation of preserved samples showed that 99% of the phytoplankton biovolume was attributed to a single picocyanobacterial species, the Merismopedia sp. Select samples were analysed for the presence of toxins genes with positive results mainly for mcyB and mcyE genes. Further analysis with HPLC MS/MS, revealed that cyanotoxins’ concentration was lower than the method detection limit - MDL (<2-6 ng/L). Conclusion: The present study highlights the importance of monitoring several water characteristics to conclude on the main drivers of a bloom and its toxicity. The findings demonstrated that it is not enough to test cyanotoxin genes as indicator of their presence since, in case of mono-domination, cyanobacteria may not be active on producing the toxins. Treatment experiments of contaminated water indicated that slow realizing peroxide granules may be an alternative to hydrogen peroxide. Treatment with CaO2 granules outperformed MgO2 granules due to higher H2O2 releasing capacity.

2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Eleni Keliri ◽  
Christia Paraskeva ◽  
Angelos Sofokleous ◽  
Assaf Sukenik ◽  
Dariusz Dziga ◽  
...  

AbstractBackgroundExcess loads of nutrients finding their way into waterbodies can cause rapid and excessive growth of phytoplankton species and lead to the formation of cyanobacterial harmful algal blooms (cyano-HABs). Toxic cyanobacteria produce a broad range of bioactive metabolites, some of which are known as cyanotoxins. These metabolites can negatively impact the ecosystem, and human and animal health, thus their presence needs to be closely monitored and mitigated. This study aimed to monitor St. George Lake (Athalassa National Forest Park, Cyprus) for its water quality characteristics, and initiate a new methodology to control the bloom that occurred in the lake during summer 2019, by comparing hydrogen peroxide treatment with novel metallic peroxide granules as source of hydrogen peroxide.ResultsLake monitoring showed that pH, salinity, total dissolved solids and conductivity varied throughout the year, and nutrients concentration was high, indicating a eutrophic lake. The cyanobacteriumMerismopediasp. bloomed in the lake between June and September 2019, comprising up to 99% of the phytoplankton biovolume. The presence of microcystin synthase encoding gene (mcyB, mcyE) was documented, however microcystins were not detected by tandem mass spectroscopy. Treatment with liquid hydrogen peroxide in concentrations 1 to 5 mg L−1had no effect on the phycocyanin fluorescence (Ft) and quantum yield of PSII (Fv/Fm) indicating an ineffective treatment for the denseMerismopediabloom (1 million cells mL−1 ± 20%). Metallic peroxide granules tested for their H2O2releasing capacity in St. George Lake water, showing that CaO2released higher H2O2concentration and therefore have better mitigation efficiency than MgO2granules.ConclusionThe present study highlights the importance of monitoring several water parameters to conclude on the different actions to be taken to limit eutrophication in the catchment area. The findings demonstrated that testing for the presence of genes involved in cyanotoxin production may not be sufficient to follow cyanotoxins in the water, therefore it should be accompanied with analytical confirmation. Treatment experiments indicated that slow release of H2O2from peroxide granules may be an alternative to liquid hydrogen peroxide when applied in appropriate doses, but further investigation is needed before it is applied at the field.Graphic Abstract


2021 ◽  
Vol 12 (6) ◽  
pp. 271-277
Author(s):  
Nicola Bates

Blue-green algae are cyanobacteria that grow in fresh, brackish or sea water. Under certain environmental conditions they form blooms in water bodies and these often colour the water blue-green (or brown, black or red). These blooms have long been known to be associated with animal deaths, occasionally resulting in mass mortality events of wildlife. Cyanotoxins produced by these organisms are neurotoxic, hepatotoxic or, less commonly, dermatotoxic. Gastrointestinal effects may also occur. Signs can be very rapid in onset, particularly with neurotoxic compounds, with death following soon after. Hepatic effects generally occur within 24 hours. Aggressive and rapid treatment is essential with decontamination, liver protectants and supportive care. Survival is rare in animals with significant clinical signs. Not all algal blooms are toxic, however, and confirmation of exposure is rarely available and not within a clinically relevant time frame. Illness and deaths in dogs associated with suspected blue-green algae exposure are signal events and should be reported to the relevant environmental authority to safeguard public and animal health.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuya Liu ◽  
Yichao Wang ◽  
Qing Xu ◽  
Mengjia Zhang ◽  
Nansheng Chen

Abstract Background Skeletonema species are prominent primary producers, some of which can also cause massive harmful algal blooms (HABs) in coastal waters under specific environmental conditions. Nevertheless, genomic information of Skeletonema species is currently limited, hindering advanced research on their role as primary producers and as HAB species. Mitochondrial genome (mtDNA) has been extensively used as “super barcode” in the phylogenetic analyses and comparative genomic analyses. However, of the 21 accepted Skeletonema species, full-length mtDNAs are currently available only for a single species, S. marinoi. Results In this study, we constructed full-length mtDNAs for six strains of five Skeletonema species, including S. marinoi, S. tropicum, S. grevillei, S. pseudocostatum and S. costatum (with two strains), which were isolated from coastal waters in China. The mtDNAs of all of these Skeletonema species were compact with short intergenic regions, no introns, and no repeat regions. Comparative analyses of these Skeletonema mtDNAs revealed high conservation, with a few discrete regions of high variations, some of which could be used as molecular markers for distinguishing Skeletonema species and for tracking the biogeographic distribution of these species with high resolution and specificity. We estimated divergence times among these Skeletonema species using 34 mtDNAs genes with fossil data as calibration point in PAML, which revealed that the Skeletonema species formed the independent clade diverging from Thalassiosira species approximately 48.30 Mya. Conclusions The availability of mtDNAs of five Skeletonema species provided valuable reference sequences for further evolutionary studies including speciation time estimation and comparative genomic analysis among diatom species. Divergent regions could be used as molecular markers for tracking different Skeletonema species in the fields of coastal regions.


2020 ◽  
pp. 65-74
Author(s):  
M. Ramya ◽  
A. Umamaheswari ◽  
S. Elumalai

Water is an absolutely required resource for life nourishment especially for the purpose of drinking, domestic and farming. People in various part of the world are under prodigious threat due to unenviable changes in the physical-chemical and biological properties of an ecosystem. Due to anthropogenic causes like industrialization, the use of fertilizers and urbanization leads to highly polluted water bodies that include fresh and brackish water. These changes influence the harmful growth of cyanobacteria that is blue green algae. cyanoHABs (Cyanobacterial Harmful Algal Blooms)  became a worldwide threat to drinking and recreational purpose due to its adopting nature according to the temperature fluctuations. In this study, a basic introduction to cyanotoxins as well as the entanglement of public health that includes route of exposure health effects and the pervasive impact of cyanotoxins and alleviation efforts in the waterbodies along with that the toxicosis. Cyanobacterial toxins such as hepatotoxicosis, neurotoxicosis, gastrointestinal disturbances respiratory and allergic reactions were reviewed. Their detection process and the treatment techniques with various physicochemical methods and bioassay methods were also reviewed.


Author(s):  
Jing Li ◽  
Lars-Anders Hansson ◽  
Kenneth M. Persson

Control of nutrients, mainly nitrogen (N) and phosphorus (P), plays a significant role in preventing cyanobacterial blooms (harmful algal blooms (HABs)). This study aimed at evaluating changes in the risk of the occurrence of cyanobacterial blooms and advancing the understanding of how N and P affect the growth of cyanobacteria in a eutrophic lake, Lake Vombsj&ouml;n, in southern Sweden. Statistical analysis was used to demonstrate the pattern of cyanobacterial blooms, that the highest content present in September and the later that algal blooms occur, the more likely it is a cyanobacterial bloom as cyanobacteria became dominating in October and November (90%). Two hypothesises tested in Lake Vombsj&ouml;n confirmed namely that a high total phosphorus (TP) level correlates with an abundance of cyanobacteria and that low N:P ratio (total nitrogen/total phosphorus &lt; 20) favours the growth of cyanobacteria. To control the growth of cyanobacteria in Lake Vombsj&ouml;n, the TP level should be kept below 20 &micro;g/L and the N:P ratio be maintained at a level of over 20. The two species Planktothrix agardhii, and Pseudanabaena spp. should be carefully monitored especially in late autumn. Future work should consider any high degree of leakage from the sediment of the dissolved phosphorus available there.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sachidananda Mishra ◽  
Richard P. Stumpf ◽  
Blake A. Schaeffer ◽  
P. Jeremy Werdell ◽  
Keith A. Loftin ◽  
...  

AbstractCyanobacterial harmful algal blooms (cyanoHABs) are a serious environmental, water quality and public health issue worldwide because of their ability to form dense biomass and produce toxins. Models and algorithms have been developed to detect and quantify cyanoHABs biomass using remotely sensed data but not for quantifying bloom magnitude, information that would guide water quality management decisions. We propose a method to quantify seasonal and annual cyanoHAB magnitude in lakes and reservoirs. The magnitude is the spatiotemporal mean of weekly or biweekly maximum cyanobacteria biomass for the season or year. CyanoHAB biomass is quantified using a standard reflectance spectral shape-based algorithm that uses data from Medium Resolution Imaging Spectrometer (MERIS). We demonstrate the method to quantify annual and seasonal cyanoHAB magnitude in Florida and Ohio (USA) respectively during 2003–2011 and rank the lakes based on median magnitude over the study period. The new method can be applied to Sentinel-3 Ocean Land Color Imager (OLCI) data for assessment of cyanoHABs and the change over time, even with issues such as variable data acquisition frequency or sensor calibration uncertainties between satellites. CyanoHAB magnitude can support monitoring and management decision-making for recreational and drinking water sources.


2000 ◽  
Vol 35 (3) ◽  
pp. 489-504 ◽  
Author(s):  
Daniel D. Olding

Abstract An investigation into phytoplankton and periphyton algal communities of two recently constructed Stormwater management ponds suggests that Stormwater impacts on biological communities are reduced during passage through the ponds, providing a degree of protection for biological communities in their receiving waters. In both ponds, disturbance effects from the incoming Stormwater on algal community richness and evenness appear to be greatest in the sediment forebay and are reduced in the main pond. However, the nature of the disturbance in the two systems can be seen to be fundamentally different from a biological perspective, with Rouge Pond functioning primarily to reduce toxins harmful to algal communities (e.g., heavy metals), and Harding Pond acting to reduce nutrients. The taxonomic composition of the two sites provides an indication of the quality of the incoming Stormwater. Rouge Pond, which contains many marine and brackish water species, receives Stormwater runoff from a major highway, while Harding Pond, containing more nutrient rich species, receives Stormwater primarily from residential properties. Despite the nutrient-rich conditions present in both ponds, nuisance blue-green algae (cyanobacte-ria) are conspicuously absent, and the ponds appear to have little potential for developing harmful algal blooms. The lack of blue-green algae can be linked to the hydraulic functioning of the ponds, suggesting that Stormwater facilities may be engineered to inhibit undesirable algal communities.


2019 ◽  
Vol 47 (8) ◽  
pp. 1072-1075 ◽  
Author(s):  
Wanda M. Haschek ◽  
May Berenbaum ◽  
David E. Hinton ◽  
Michelle Cora ◽  
Neil Chernoff ◽  
...  

This session explored the effects of pollutants on One Health at the ecosystem level that included microbes, insects, fish, and humans. The concept of One Health seeks to synergize medical, veterinary, and other health science disciplines to more effectively advance human and animal health. Presentations explored the interactions of pesticides, pathogens, phytochemicals, and xenobiotic biotransformation in bee colony losses critical for food security (bees have been recently listed under the 2017 US Food and Drug Administration (FDA) veterinary feed directive); the role of pathology in identifying the effects of pollutants on fish as sentinels for human health; the effects in rats of per- and polyfluoroalkyl substances (PFAS) that can persist in the environment and contaminate drinking water; harmful algal blooms and toxin production leading to animal and human disease; and the processing of environmental carcinogens by intestinal microbiota.


2021 ◽  
Vol 13 (12) ◽  
pp. 2305
Author(s):  
Timothy T. Wynne ◽  
Sachidananda Mishra ◽  
Andrew Meredith ◽  
R. Wayne Litaker ◽  
Richard P. Stumpf

Satellite imagery has been used to monitor and assess Harmful Algal Blooms (HABs), specifically, cyanobacterial blooms in Lake Erie (the USA and Canada) for over twelve years. In recent years, imagery has been applied to the other Great Lakes as well as other U.S. lakes. The key algorithm used in this monitoring system is the cyanobacterial index (CI), a measure of the chlorophyll found in cyanobacterial blooms. The CI is a “spectral shape” (or curvature) algorithm, which is a form of the second derivative around the 681 nm (MERIS/OLCI) or 678 nm (MODIS) band, which is robust and implicitly includes an atmospheric correction, allowing reliable use for many more scenes than analytical algorithms. Monitoring of cyanobacterial blooms with the CI began with the European Space Agency’s (ESA) Medium Resolution Imaging Spectrometer (MERIS) sensor (2002–2012). With the loss of data from MERIS in the spring of 2012, the monitoring system shifted to using NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS has bands that allow computation of a CI product, which was intercalibrated with MERIS at the time to establish a conversion of MODIS CI to MERIS CI. In 2016, ESA launched the Ocean and Land Color Imager (OLCI), the replacement for MERIS, on the Sentinel-3 spacecraft. MODIS can serve two purposes. It can provide a critical data set for the blooms of 2012–2015, and it offers a bridge from MERIS to OLCI. We propose a basin-wide integrated technique for intercalibrating the CI algorithm from MODIS to both MERIS and OLCI. This method allowed us to intercalibrate OLCI CI to MERIS CI, which would then allow the production of a 20-year and ongoing record of cyanobacterial bloom activity. This approach also allows updates as sensor calibrations change or new sensors are launched, and it could be readily applied to spectral shape algorithms.


Sign in / Sign up

Export Citation Format

Share Document