scholarly journals Central metabolic responses of microorganisms to years and decades of soil warming

Author(s):  
Andrea Söllinger ◽  
Mathilde Borg Dahl ◽  
Joana Séneca ◽  
Judith Prommer ◽  
Erik Verbruggen ◽  
...  

Abstract Microbial physiological responses to long-term warming are poorly understood. Here we applied metatranscriptomics to investigate how microorganisms react to medium-term (8 years) and long-term (>5 decades) subarctic grassland soil warming of +6 °C. Decades, but not years, of warming induced changes in relative abundances of eukaryotic, prokaryotic, and viral transcripts and reduced functional richness. However, irrespective of the duration of warming, we observed a community-wide upregulation of central (carbon) metabolisms and cell replication in the warmed soils, whereas essential energy metabolism and protein biosynthesis complexes and pathways were downregulated. This coincided with a decrease of microbial biomass and lower soil substrate concentrations (e.g. dissolved organic carbon and phosphorus). We conclude that permanently accelerated reaction rates at higher temperatures facilitate a downregulation of energy metabolism and protein biosynthesis, potentially freeing energy and matter for substrate acquisition and growth. This resource allocation seems to be a common response in microorganisms and allows sustaining high metabolic activities and replication rates even after decades of soil warming.

2021 ◽  
Author(s):  
Andrea Söllinger ◽  
Joana Séneca ◽  
Mathilde Borg Dahl ◽  
Liabo L. Motleleng ◽  
Judith Prommer ◽  
...  

Abstract How soil microorganisms respond to global warming is key to infer future soil-climate feedbacks, yet poorly understood. Here we applied metatranscriptomics to investigate microbial physiological responses to medium- (8 years) and long-term (>50 years) subarctic grassland soil warming of +6 °C. Besides indications for a community-wide upregulation of central metabolisms and cell replication we observed a downregulation of the protein biosynthesis machinery in the warmed soils, coinciding with a lower microbial biomass, RNA, and soil substrate content. We conclude that permanently accelerated reaction rates at higher temperatures and reduced substrate concentrations results in a cellular reduction of ribosomes, the macromolecular complexes carrying out protein biosynthesis. Later efforts to test this, including a short-term warming experiment (6 weeks, +6 °C), further supported our conclusion. Downsizing the protein biosynthesis machinery facilitates liberation of energy and matter, allowing microorganisms to maintain high metabolic activities and cell division rates even after decades of warming.


2020 ◽  
Author(s):  
Robert Calin-Jageman ◽  
Irina Calin-Jageman ◽  
Tania Rosiles ◽  
Melissa Nguyen ◽  
Annette Garcia ◽  
...  

[[This is a Stage 2 Registered Report manuscript now accepted for publication at eNeuro. The accepted Stage 1 manuscript is posted here: https://psyarxiv.com/s7dft, and the pre-registration for the project is available here (https://osf.io/fqh8j, 9/11/2019). A link to the final Stage 2 manuscript will be posted after peer review and publication.]] There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible due to retrieval failure. These different accounts of forgetting lead to different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is due to decay, then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is due to retrieval failure, then savings should be mechanistically distinct from encoding. In this registered report we conducted a pre-registered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 day after training), a forgotten memory (8 days after training), and a savings memory (8 days after training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica (n = 8 samples/group). We found that the re-activation of sensitization during savings does not involve a substantial transcriptional response. Thus, savings is transcriptionally distinct relative to a newer (1-day old) memory, with no co-regulated transcripts, negligible similarity in regulation-ranked ordering of transcripts, and a negligible correlation in training-induced changes in gene expression (r = .04 95% CI [-.12, .20]). Overall, our results suggest that forgetting of sensitization memory represents retrieval failure.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Pierre-Yves Plaçais ◽  
Éloïse de Tredern ◽  
Lisa Scheunemann ◽  
Séverine Trannoy ◽  
Valérie Goguel ◽  
...  

1992 ◽  
Vol 12 (5) ◽  
pp. 381-386 ◽  
Author(s):  
F. Buttgereit ◽  
M. D. Brand ◽  
M. Müller

The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In constrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.


1993 ◽  
Vol 182 (1) ◽  
pp. 57-69 ◽  
Author(s):  
M. Wortmann ◽  
W. Zarnack

1. We simultaneously recorded lift/body weight, flight speed, body angle and 12 variables of wing movement for locusts performing tethered long-term flight with low movement scatter. The movements of the forewings and hindwings were recorded in three dimensions by means of miniature induction coils. 2. By adjusting the body angle, we could reproducibly manipulate lift generation as a consequence of induced changes in the wings' movement patterns. We were therefore able to analyse various relationships between the movement patterns and lift. 3. The most prominent variations of kinematic variables were observed for the forewing movements. The relative lift and the steady angle of pitch were positively correlated but there was a negative correlation between relative lift and pitching amplitude. We found no correlation between relative lift and flapping amplitude. Our results seem to correspond to a new theory about unsteady aerodynamics of oscillating aerofoils. 4. We sometimes observed variations in lagging. 5. The forewing downstroke was delayed by 0–8 ms following the hindwing downstroke. Relative lift was positively correlated to this delay.


1998 ◽  
Vol 800 (1) ◽  
pp. 114-124 ◽  
Author(s):  
Jean-François Doriat ◽  
Violette Koziel ◽  
Anne-Claude Humbert ◽  
Jean-Luc Daval

2016 ◽  
Author(s):  
Edwin Mulder ◽  
Alexandra Noppe ◽  
Ulrich Limper

In the context of space physiology, research is being conducted to understand the physiological effects from radiation, hypogravity, spaceflight and planetary environments. The goal is to identify new methods to address the unique challenges in medical treatment, human factors, and behavioral health support on future exploration missions. As crew size is small and time is limited during actual missions, space agencies resort to addressing the effects of space travel in analog environments that have features similar to those of spaceflight. Head-down tilt bed rest (HDBR), for instance, is one of the established terrestrial models used to simulate some of the physiological changes experienced during spaceflight under weightless conditions and is therefore considered a valuable testbed to prepare for future long-duration exploration missions. HDBR studies are performed in extremely-well controlled laboratory settings, offering the possibility to test the effects of – what is in essence - physical inactivity and fluid shift. However, HDBR studies have a dual purpose, as they are also invaluable for the development, testing and validation of countermeasures aimed at mitigating microgravity-induced changes to the human body. With respect to the latter, the consensus is that short-term bed rest studies (< 14 days) serve foremost as a first screening of potential promising countermeasures, particularly for the cardiovascular system. Screening of preventative procedures and protocols for the muscular system requires at least mid-term (14 -28 days), whereas studies aiming to validate countermeasures for bone require long-term HDBR studies, in the order of 60-90 days. Hitherto the preferred countermeasure during spaceflight has been physical exercise. The presentation will therefore provide a short overview of the current onboard exercise regimen and will, in light of this, outline the scientific background and aims of the ongoing 60-day HDBR study at the :envihab (from the words ‘Environment’ and ‘Habitat’), the DLR Institute of Aerospace Medicine’s state-of-the-art research facility.


2021 ◽  
Vol 67 (2) ◽  
pp. 76-82
Author(s):  
Jean Michel Maixent ◽  
Sandrine V. Pierre ◽  
Stéphane Sadrin ◽  
Régis Guieu ◽  
Franck Paganelli

We investigated the effects of long-term anti-ischemic therapy with trimetazidine on Na,K-ATPase (NKA) activity and protein expression in cardiomyopathy. NKA isoforms in membrane fractions from cardiomyopathic hamsters of the BIO 14.6 strain were studied and compared with those from healthy Syrian golden hamsters (F1B). Trimetazidine was orally administered to a subset of cardiomyopathic hamsters in the early stage of active disease (30 days) until the congestive stage (350 days). In the congestive stage of cardiac failure, the cardiomyopathic hamsters displayed altered NKA activity (-55 % vs. F1B; p<0.01), which was related to a specific decrease in abundance of the membrane NKA ?1 isoform (-27 % vs. F1B). Trimetazidine partially prevented the cardiomyopathy-induced changes in NKA activity (+38 %) and ?1 membrane expression (+ 66 %) without inducing changes in the expression of the ?2 isoform or 1 isoform of NKA. Cardiac hypertrophy and remodeling were reduced after trimetazidine treatment. Additionally, the abundance of NKA ?1 in membranes was negatively correlated with the ventricular weight/body weight ratio (an index of cardiac hypertrophy) (r2 = 0.99; p<0.0015). These findings suggest that some of the cardioprotective effect of trimetazidine during long-term cardiomyopathy may be achieved via regulation of cardiac remodeling and selective modulation cardiac NKA isoforms.


Sign in / Sign up

Export Citation Format

Share Document