scholarly journals Predicting The Risk and Timing of Bipolar Disorder In Offspring of Bipolar Parents: Exploring The Utility of a Neural Network Approach

Author(s):  
Alysha Cooper ◽  
Julie Horrocks ◽  
Sarah Margaret Goodday ◽  
Charles Keown-Stoneman ◽  
Anne Duffy

Abstract BackgroundBipolar disorder onset peaks over early adulthood and confirmed family history is a robust risk factor. However, penetrance within families varies and most children of bipolar parents will not develop the illness. Individualized risk prediction would be helpful for identifying those young people most at risk and to inform targeted intervention. Using prospectively collected data from the Canadian Flourish High-Risk Offspring cohort study available in routine practice, we explored the use of a neural network, known as the Partial Logistic Artificial Neural Network (PLANN) to predict the time to diagnosis of bipolar spectrum disorders Results Overall, for predictive performance, PLANN outperformed the more traditional logistic model for one year, three year and five-year predictions. PLANN was better able to discriminate or rank individuals based on their risk of developing bipolar disorder, better able to predict the probability of developing bipolar disorder and had higher accuracy than the logistic model. ConclusionsThis evaluation of PLANN is a useful step in the investigation of using neural networks as tools in the prediction of diagnosis of mental health for at-risk individuals and demonstrated the potential that neural networks have in this field. Future research is needed to replicate these findings in a separate high-risk sample.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alysha Cooper ◽  
Julie Horrocks ◽  
Sarah Goodday ◽  
Charles Keown-Stoneman ◽  
Anne Duffy

Abstract Background Bipolar disorder onset peaks over early adulthood and confirmed family history is a robust risk factor. However, penetrance within families varies and most children of bipolar parents will not develop the illness. Individualized risk prediction would be helpful for identifying those young people most at risk and to inform targeted intervention. Using prospectively collected data from the Canadian Flourish High-risk Offspring cohort study available in routine practice, we explored the use of a neural network, known as the Partial Logistic Artificial Neural Network (PLANN) to predict the time to diagnosis of major mood disorders in 1, 3 and 5-year intervals. Results Overall, for predictive performance, PLANN outperformed the more traditional discrete survival model for 3-year and 5-year predictions. PLANN was better able to discriminate or rank individuals based on their risk of developing a major mood disorder, better able to predict the probability of developing a major mood disorder and better able to identify individuals who would be diagnosed in future time intervals. The average AUC achieved by PLANN for 5-year prediction was 0.74, which indicates good discrimination. Conclusions This evaluation of PLANN is a useful step in the investigation of using neural networks as tools in the prediction of mood disorders in at-risk individuals and the potential that neural networks have in this field. Future research is needed to replicate these findings in a separate high-risk offspring sample.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1526 ◽  
Author(s):  
Choongmin Kim ◽  
Jacob A. Abraham ◽  
Woochul Kang ◽  
Jaeyong Chung

Crossbar-based neuromorphic computing to accelerate neural networks is a popular alternative to conventional von Neumann computing systems. It is also referred as processing-in-memory and in-situ analog computing. The crossbars have a fixed number of synapses per neuron and it is necessary to decompose neurons to map networks onto the crossbars. This paper proposes the k-spare decomposition algorithm that can trade off the predictive performance against the neuron usage during the mapping. The proposed algorithm performs a two-level hierarchical decomposition. In the first global decomposition, it decomposes the neural network such that each crossbar has k spare neurons. These neurons are used to improve the accuracy of the partially mapped network in the subsequent local decomposition. Our experimental results using modern convolutional neural networks show that the proposed method can improve the accuracy substantially within about 10% extra neurons.


2000 ◽  
Vol 1719 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Satish C. Sharma ◽  
Pawan Lingras ◽  
Guo X. Liu ◽  
Fei Xu

Estimation of the annual average daily traffic (AADT) for low-volume roads is investigated. Artificial neural networks are compared with the traditional factor approach for estimating AADT from short-period traffic counts. Fifty-five automatic traffic recorder (ATR) sites located on low-volume rural roads in Alberta, Canada, are used as study samples. The results of this study indicate that, when a single 48-h count is used for AADT estimation, the factor approach can yield better results than the neural networks if the ATR sites are grouped appropriately and the sample sites are correctly assigned to various ATR groups. Unfortunately, the current recommended practice offers little guidance on how to achieve the assignment accuracy that may be necessary to obtain reliable AADT estimates from a single 48-h count. The neural network approach can be particularly suitable for estimating AADT from two 48-h counts taken at different times during the counting season. In fact, the 95th percentile error values of about 25 percent as obtained in this study for the neural network models compare favorably with the values reported in the literature for low-volume roads using the traditional factor approach. The advantage of the neural network approach is that classification of ATR sites and sample site assignments to ATR groups are not required. The analysis of various groups of low-volume roads presented also leads to a conclusion that, when defining low-volume roads from a traffic monitoring point of view, it is not likely to matter much whether the AADT on the facility is less than 500 vehicles, less than 750 vehicles, or less than 1,000 vehicles.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 588
Author(s):  
Felipe Leite Coelho da Silva ◽  
Kleyton da Costa ◽  
Paulo Canas Rodrigues ◽  
Rodrigo Salas ◽  
Javier Linkolk López-Gonzales

Forecasting the industry’s electricity consumption is essential for energy planning in a given country or region. Thus, this study aims to apply time-series forecasting models (statistical approach and artificial neural network approach) to the industrial electricity consumption in the Brazilian system. For the statistical approach, the Holt–Winters, SARIMA, Dynamic Linear Model, and TBATS (Trigonometric Box–Cox transform, ARMA errors, Trend, and Seasonal components) models were considered. For the approach of artificial neural networks, the NNAR (neural network autoregression) and MLP (multilayer perceptron) models were considered. The results indicate that the MLP model was the one that obtained the best forecasting performance for the electricity consumption of the Brazilian industry under analysis.


Author(s):  
Suraphan Thawornwong ◽  
David Enke

During the last few years there has been growing literature on applications of artificial neural networks to business and financial domains. In fact, a great deal of attention has been placed in the area of stock return forecasting. This is due to the fact that once artificial neural network applications are successful, monetary rewards will be substantial. Many studies have reported promising results in successfully applying various types of artificial neural network architectures for predicting stock returns. This chapter reviews and discusses various neural network research methodologies used in 45 journal articles that attempted to forecast stock returns. Modeling techniques and suggestions from the literature are also compiled and addressed. The results show that artificial neural networks are an emerging and promising computational technology that will continue to be a challenging tool for future research.


Author(s):  
Kai-Chun Cheng ◽  
Ray E. Eberts

An Advanced Traveler Information System (ATIS), a key component of Intelligent Vehicle highway Systems (IVHS) in the near future, will help travelers find locations of restaurants, lodging, gas stations, and rest stops. On typical ATIS displays, which are now being incorporated in some advanced vehicles, the choices for these traveler services are presented to the vehicle occupants alphabetically. An experiment was conducted to determine whether individualizing the display through the use of neural networks enhanced performance when choosing restaurants. The neural network ATIS was compared to an ATIS that displayed the most frequently chosen restaurants at the top, one that alphabetized the list of restaurants, and one that randomly displayed the restaurant choices. The time to choose a restaurant was significantly faster for the individualized displays (neural network and frequency) when compared to the nonindividualized displays (alphabetical and random). When the two individualized displays were compared, choice time was significantly faster for the neural network approach.


2012 ◽  
Vol 490-495 ◽  
pp. 688-692
Author(s):  
Zhong Biao Sheng ◽  
Xiao Rong Tong

Three means to realize function approach such as the interpolation approach, fitting approach as well as the neural network approach are discussed based on Matlab to meet the demand of data processing in engineering application. Based on basic principle of introduction, realization methods to non-linear are researched using interpolation function and fitting function in Matlab with example. It mainly studies the RBF neural networks and the training method. RBF neural network to proximate nonlinear function is designed and the desired effect is achieved through the training and simulation of network. As is shown from the simulation results, RBF network has strong nonlinear processing and approximating features, and RBF network model has the characteristics of high precision, fast learning speed for the prediction.


2004 ◽  
Vol 98 (2) ◽  
pp. 371-378 ◽  
Author(s):  
SCOTT DE MARCHI ◽  
CHRISTOPHER GELPI ◽  
JEFFREY D. GRYNAVISKI

Beck, King, and Zeng (2000) offer both a sweeping critique of the quantitative security studies field and a bold new direction for future research. Despite important strengths in their work, we take issue with three aspects of their research: (1) the substance of the logit model they compare to their neural network, (2) the standards they use for assessing forecasts, and (3) the theoretical and model-building implications of the nonparametric approach represented by neural networks. We replicate and extend their analysis by estimating a more complete logit model and comparing it both to a neural network and to a linear discriminant analysis. Our work reveals that neural networks do not perform substantially better than either the logit or the linear discriminant estimators. Given this result, we argue that more traditional approaches should be relied upon due to their enhanced ability to test hypotheses.


2018 ◽  
Vol 146 (11) ◽  
pp. 3885-3900 ◽  
Author(s):  
Stephan Rasp ◽  
Sebastian Lerch

Abstract Ensemble weather predictions require statistical postprocessing of systematic errors to obtain reliable and accurate probabilistic forecasts. Traditionally, this is accomplished with distributional regression models in which the parameters of a predictive distribution are estimated from a training period. We propose a flexible alternative based on neural networks that can incorporate nonlinear relationships between arbitrary predictor variables and forecast distribution parameters that are automatically learned in a data-driven way rather than requiring prespecified link functions. In a case study of 2-m temperature forecasts at surface stations in Germany, the neural network approach significantly outperforms benchmark postprocessing methods while being computationally more affordable. Key components to this improvement are the use of auxiliary predictor variables and station-specific information with the help of embeddings. Furthermore, the trained neural network can be used to gain insight into the importance of meteorological variables, thereby challenging the notion of neural networks as uninterpretable black boxes. Our approach can easily be extended to other statistical postprocessing and forecasting problems. We anticipate that recent advances in deep learning combined with the ever-increasing amounts of model and observation data will transform the postprocessing of numerical weather forecasts in the coming decade.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3766 ◽  
Author(s):  
Shin-Hyung Song

In this research, hot deformation experiments of 316L stainless steel were carried out at a temperature range of 800–1000 °C and strain rate of 2 × 10−3–2 × 10−1. The flow stress behavior of 316L stainless steel was found to be highly dependent on the strain rate and temperature. After the experimental study, the flow stress was modeled using the Arrhenius-type constitutive equation, a neural network approach, and the support vector regression algorithm. The present research mainly focused on a comparative study of three algorithms for modeling the characteristics of hot deformation. The results indicated that the neural network approach and the support vector regression algorithm could be used to model the flow stress better than the approach of the Arrhenius-type equation. The modeling efficiency of the support vector regression algorithm was also found to be more efficient than the algorithm for neural networks.


Sign in / Sign up

Export Citation Format

Share Document