scholarly journals Impact of cavity on interatomic Coulombic decay

Author(s):  
Lorenz Cederbaum ◽  
Alexander Kuleff

Abstract The impact of quantum light on interatomic Coulombic decay (ICD) is investigated. In ICD the excess energy of an excited atom A is efficiently utilized to ionize a neighboring atom B. In quantum light an ensemble of atoms A form polaritonic states which can undergo ICD with B. It is shown that this process is dramatically altered compared to classical ICD. The ICD rate depends sensitively on the atomic distribution and orientation of the ensemble. General consequences are discussed.

1985 ◽  
Vol 5 (1) ◽  
pp. 3-9 ◽  
Author(s):  
L. Bevan ◽  
H. Nugent ◽  
R. Potter

1947 ◽  
Vol 20 (4) ◽  
pp. 1054-1076
Author(s):  
E. H. Dock ◽  
J. R. Scott

Abstract A comparison has been made of impact tests by the pendulum machine (Izod) and by the falling-weight machine (Izod and Charpy), using fabric board, paper board, molded resin (Bakelite), and ebonite, each in four types of test-pieces; unnotched, saw-cut notch, V-notch with 1 mm. root radius, and V-notch with 0.5 mm. root radius. The effect of notching on impact strength varies from one material to another, and may alter their order of merit. Saw-cut and V-notches with the same root radius nearly always give about the same results, and reducing the root radius usually (but not always) reduces the impact strength. The pendulum machine always gives higher results than the falling weight-machine in Izod tests, and the ratio varies with the material, though not sufficiently to alter the order of merit. Under the conditions used in the present tests with the falling-weight machine, Charpy tests (70 mm. between supports) nearly always give higher values than Izod tests (22 mm. striking distance), but both arrange the materials in the same order of merit. Standard errors are worked out for the pendulum test results; V-notched specimens appear to give, if anything, the best accuracy. The sources of variability in test results, and hence of errors in the final value, are discussed in an attempt to compare the accuracies of the two machines. Although an exact comparison could not be made, there appears to be no great difference between the two machines as regards the accuracy of the result obtained with a given number of test-pieces. The four types of test-piece differ very little, on the whole, in this respect. With the falling-weight machine, the Charpy test appears to give rather better accuracy than the Izod test. There is no definite evidence that the amount of excess energy in the pendulum test influences the result, except perhaps with Bakelite. The variability of all four materials tested is such that a maximum excess energy limit of 25 per cent cannot be adhered to without excluding either the weakest or the strongest specimens and so obtaining a false mean. In Izod tests on the pendulum machine a 20 mm. striking distance gives higher values for fabric board than a 35 mm. striking distance; the former has the advantage that no incomplete breaks occur, as happens with the longer striking distance. Attention is drawn to certain advantages and disadvantages of the two types of machine, and to the necessity for defining a “break” in the case of laminated materials, where cracks or incomplete breaks are frequent.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7069 ◽  
Author(s):  
Carola Schedlbauer ◽  
Dominique Blaue ◽  
Martin Gericke ◽  
Matthias Blüher ◽  
Janine Starzonek ◽  
...  

Background Non-alcoholic fatty liver disease is known as determining part of human obesity. The impact of body weight (BW) gain on liver metabolism has not been extensively investigated yet. Objectives To investigate hepatic alterations caused by increasing BW in ponies and horses. Animals A total of 19 non-obese equines (10 Shetland ponies, geldings; nine Warmblood horses, geldings). Methods Animals received 200% of their metabolizable maintenance energy requirements for 2 years. Serum alkaline phosphatase, glutamate dehydrogenase (GLDH), aspartate aminotransferase (AST), and gamma-glutamyl transferase activities and bile acids were analyzed several times during 2 years of hypercaloric diet. Hepatic lipid content and hepatic levels of the interleukin (IL)-6, tumor necrosis factor α (TNFα), cluster of differentiation (CD) 68, IL-1β, lipoprotein lipase (LPL), fatty acid-binding protein 1, chemerin and nuclear factor-κB mRNAs were assessed at the start of the study and after 1 and 2 years of excess energy intake. Results The mean (±SD) BW gain recorded during 2 years of excess energy intake was 29.9 ± 19.4% for ponies and 17 ± 6.74% for horses. The hepatic lipid content was not profoundly affected by increasing BW. Levels of the IL-6, TNFα, CD68 and IL-1β mRNAs did not change during BW gain. Levels of the chemerin mRNA increased significantly in both breeds (ponies: P = 0.02; horses: P = 0.02) in response to BW gain. Significant differences in serum GLDH and AST activities, serum bile acid concentrations and hepatic levels of the LPL mRNA were observed between ponies and horses at the end of the study. Conclusions Chemerin might represent an interesting marker for future equine obesity research. Interestingly, steatosis caused by increasing BW may occur later in the development of obesity in equines than in humans. Additionally, the hepatic metabolism exhibits differences between ponies and horses, which may explain in part the greater susceptibility of ponies to obesity-associated metabolic dysregulations.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 169-257 ◽  
Author(s):  
J. Green

The term geo-sciences has been used here to include the disciplines geology, geophysics and geochemistry. However, in order to apply geophysics and geochemistry effectively one must begin with a geological model. Therefore, the science of geology should be used as the basis for lunar exploration. From an astronomical point of view, a lunar terrain heavily impacted with meteors appears the more reasonable; although from a geological standpoint, volcanism seems the more probable mechanism. A surface liberally marked with volcanic features has been advocated by such geologists as Bülow, Dana, Suess, von Wolff, Shaler, Spurr, and Kuno. In this paper, both the impact and volcanic hypotheses are considered in the application of the geo-sciences to manned lunar exploration. However, more emphasis is placed on the volcanic, or more correctly the defluidization, hypothesis to account for lunar surface features.


1997 ◽  
Vol 161 ◽  
pp. 197-201 ◽  
Author(s):  
Duncan Steel

AbstractWhilst lithopanspermia depends upon massive impacts occurring at a speed above some limit, the intact delivery of organic chemicals or other volatiles to a planet requires the impact speed to be below some other limit such that a significant fraction of that material escapes destruction. Thus the two opposite ends of the impact speed distributions are the regions of interest in the bioastronomical context, whereas much modelling work on impacts delivers, or makes use of, only the mean speed. Here the probability distributions of impact speeds upon Mars are calculated for (i) the orbital distribution of known asteroids; and (ii) the expected distribution of near-parabolic cometary orbits. It is found that cometary impacts are far more likely to eject rocks from Mars (over 99 percent of the cometary impacts are at speeds above 20 km/sec, but at most 5 percent of the asteroidal impacts); paradoxically, the objects impacting at speeds low enough to make organic/volatile survival possible (the asteroids) are those which are depleted in such species.


1997 ◽  
Vol 161 ◽  
pp. 189-195
Author(s):  
Cesare Guaita ◽  
Roberto Crippa ◽  
Federico Manzini

AbstractA large amount of CO has been detected above many SL9/Jupiter impacts. This gas was never detected before the collision. So, in our opinion, CO was released from a parent compound during the collision. We identify this compound as POM (polyoxymethylene), a formaldehyde (HCHO) polymer that, when suddenly heated, reformes monomeric HCHO. At temperatures higher than 1200°K HCHO cannot exist in molecular form and the most probable result of its decomposition is the formation of CO. At lower temperatures, HCHO can react with NH3 and/or HCN to form high UV-absorbing polymeric material. In our opinion, this kind of material has also to be taken in to account to explain the complex evolution of some SL9 impacts that we observed in CCD images taken with a blue filter.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
Lucien F. Trueb

Crushed and statically compressed Madagascar graphite that was explosively shocked at 425 kb by means of a planar flyer-plate is characterized by a black zone extending for 2 to 3 nun below the impact plane of the driver. Beyond this point, the material assumes the normal gray color of graphite. The thickness of the black zone is identical with the distance taken by the relaxation wave to overtake the compression wave.The main mechanical characteristic of the black material is its great hardness; steel scalpels and razor blades are readily blunted during attempts to cut it. An average microhardness value of 95-3 DPHN was obtained with a 10 kg load. This figure is a minimum because the indentations were usually cracked; 14.8 DPHN was measured in the gray zone.


Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.


Sign in / Sign up

Export Citation Format

Share Document