scholarly journals Zinc Substituted Nickel-cobalt Nano-ferrites via Citrate-gel Auto-combustion Method for High-frequency Applications: Studies on Crystal Structure and Dielectric Properties

Author(s):  
Marwene Oumezzine ◽  
Alin Iuga Iuga ◽  
Monica ENCULESCU ◽  
Aurelian Catalin Galca

Abstract Ni0.8−xZnxCo0.2Fe2O4 (x = 0.0, 0.05, 0.10 and 0.20) were prepared by citrate-gel auto-combustion method. The structural investigation using powder X-ray diffraction (XRD) showed the formation of single-phase cubic spinel structures with Fd-3m space group for all prepared samples. As the Zn2+ concentration is increased, the values of the lattice constant, tetrahedral and octahedral bond lengths undergo significant change. The absolute experimental lattice parameters are closely to the Vegard’ s law derived ones, suggesting that the cations concentration fairly correspond with those calculated prior chemical synthesis. Fourier transform infrared (FTIR) absorption bands at 594–400 cm− 1 confirm the formation of spinel structure. The values of dielectric constant and loss tangent were reported to decline with frequency and the Zn2+composition (x). Incorporation of Zn at nickel-cobalt resulted in decrease in ac conductivity at RT. Here, we report a low loss tangent factor of the order of 8 × 103for the sample with x = 0.20 make this composition suitable for high frequency applications. Imaginary electric modulus studies unveil the presence of non-Debye type of dielectric relaxation phenomenon. The activation energy of our samples calculated from modulus spectra is found to increase with further substitution of Zn2+ concentration.

Cerâmica ◽  
2019 ◽  
Vol 65 (374) ◽  
pp. 274-281 ◽  
Author(s):  
S. S. Satpute ◽  
S. R. Wadgane ◽  
S. R. Kadam ◽  
D. R. Mane ◽  
R. H. Kadam

Abstract Y3+ substituted strontium hexaferrites having chemical composition SrYxFe12-xO19 (x= 0.0, 0.5, 1.0, 1.5) were successfully synthesized by sol-gel auto-combustion method. The structural and morphological studies of prepared samples were investigated by using X-ray diffraction technique, energy dispersive X-ray spectroscopy, field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy. The X-ray diffraction pattern confirmed the single-phase hexagonal structure of yttrium substituted strontium ferrite and the lattice parameters a and c increased with the substitution of Y3+ ions. The crystallite size also varied with x content from 60 to 80 nm. The morphology was studied by FE-SEM, and the grain size of nanoparticles ranged from 44 to 130 nm. The magnetic properties were investigated by using vibrating sample magnetometer. The value of saturation magnetization decreased from 49.60 to 35.40 emu/g. The dielectric constant decreased non-linearly whereas the electrical dc resistivity increased with the yttrium concentration in strontium hexaferrite.


2020 ◽  
Vol 43 (1) ◽  
pp. 26-42 ◽  
Author(s):  
Zahra Hajian Karahroudi ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

AbstractThis study presents a preparation of SrFe12O19– SrTiO3 nanocomposite synthesis via the green auto-combustion method. At first, SrFe12O19 nanoparticles were synthesized as a core and then, SrTiO3 nanoparticles were prepared as a shell for it to manufacture SrFe12O19–SrTiO3 nanocomposite. A novel sol-gel auto-combustion green synthesis method has been used with lemon juice as a capping agent. The prepared SrFe12O19–SrTiO3 nanocomposites were characterized by using several techniques to characterize their structural, morphological and magnetic properties. The crystal structures of the nanocomposite were investigated via X-ray diffraction (XRD). The morphology of SrFe12O19– SrTiO3 nanocomposite was studied by using a scanning electron microscope (SEM). The elemental composition of the materials was analyzed by an energy-dispersive X-ray (EDX). Magnetic properties and hysteresis loop of nanopowder were characterized via vibrating sample magnetometer (VSM) in the room temperature. Fourier transform infrared spectroscopy (FTIR) spectra of the samples showed the molecular bands of nanoparticles. Also, the photocatalytic behavior of nanocomposites has been checked by the degradation of azo dyes under irradiation of ultraviolet light.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2095 ◽  
Author(s):  
Jinpei Lin ◽  
Jiaqi Zhang ◽  
Hao Sun ◽  
Qing Lin ◽  
Zeping Guo ◽  
...  

Cobalt-chromium ferrite, CoCrxFe2−xO4 (x = 0–1.2), has been synthesized by the sol-gel auto-combustion method. X-ray diffraction (XRD) indicates that samples calcined at 800 °C for 3 h were a single-cubic phase. The lattice parameter decreased with increasing Cr concentration. Scanning electron microscopy (SEM) confirmed that the sample powders were nanoparticles. It was confirmed from the room temperature Mössbauer spectra that transition from the ferrimagnetic state to the superparamagnetic state occurred with the doping of chromium. Both the saturation magnetization and the coercivity decreased with the chromium doping. With a higher annealing temperature, the saturation magnetization increased and the coercivity increased initially and then decreased for CoCr0.2Fe1.8O4.


2019 ◽  
Vol 11 (11) ◽  
pp. 1079-1081 ◽  
Author(s):  
Prachi Joshi ◽  
Pallavi Saxena ◽  
M. D. Varshney ◽  
V. N. Rai ◽  
A. Mishra

CoCr2O4 nanoparticles were prepared by low-temperature sol–gel auto combustion method. In this paper, we have investigated the structural behavior of CoCr2O4 nanoparticles annealed at two different temperatures (600 °C and 800 °C). From the X-ray diffraction (XRD) pattern of CoCr2O4, we have found that there is no change in crystalline structure and it was indexed in the cubic spinel structure with space group Fd3m. It was observed that average crystallite size increases with calcination temperature. High calcination temperature reduced the noise level and enhanced the accuracy of calculated parameters. For both the samples of CoCr2O4, we observed Raman scattering modes at around 471, 516, 539, 561, 590, 626 and 688 cm–1. The additional modes in vibrational spectra appear due to the disorder effect.


1993 ◽  
Vol 115 (2) ◽  
pp. 219-224 ◽  
Author(s):  
R. K. Agarwal ◽  
A. Dasgupta

A mechanistic model is presented for predicting the effective dielectric constant and loss tangent of woven-fabric reinforced composites with low-loss constituents. A two-scale asymptotic homogenization scheme is used to predict the orthotropic effective properties. A three-dimensional unit-cell enclosing the characteristic periodic repeat pattern in the fabric weave is isolated and modeled mathematically. Electrostatic boundary value problems (BVP’s) are formulated in the unit-cell and are solved analytically to predict effective dielectric constant of the composite, using three-dimensional series-parallel reactance nets. Results are also verified numerically, using finite element methods. The effective dielectric constant and the effective loss tangent are then obtained, analogous to mechanical viscoelastic problems for low-loss materials. The predicted dielectric constant and loss tangent are compared with experimental results for E-glass/epoxy laminates. Frequency dependence of the effective dielectric constant and loss tangent is obtained from the corresponding behavior of the constituent materials. Trade-off studies are conducted to investigate the effect of the constituent material properties on orthotropic effective dielectric permittivity.


2016 ◽  
Vol 30 (18) ◽  
pp. 1650247 ◽  
Author(s):  
Mahdi Ghasemifard ◽  
Misagh Ghamari ◽  
Meysam Iziy

TiO2-(Ti[Formula: see text]Si[Formula: see text]O2 nanopowders (TS-NPs) with average particle size around 90 nm were successfully synthesized by controlled auto-combustion method by using citric acid/nitric acid (AC:NA) and urea/metal cation (U:MC). The structure of powders was studied based on their X-ray diffraction (XRD) patterns. The XRD of TS-NPs shows that rutile and anatase are the main phases of TS-NPs for AC:NA and U:MC, respectively. Particle size and histogram of nanopowders were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Optical properties of TS-NPs were calculated by Fourier transform infrared spectroscopy (FTIR) and Kramers–Kroning (KK) relation. Plasma frequencies of TS-NPs obtained from energy loss functions depend on fuels as a result of changes in crystal structure, particle size distribution, and morphology.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1476
Author(s):  
Vasyl Mykhailovych ◽  
Andrii Kanak ◽  
Ştefana Cojocaru ◽  
Elena-Daniela Chitoiu-Arsene ◽  
Mircea Nicolae Palamaru ◽  
...  

Spinel chromite nanoparticles are prospective candidates for a variety of applications from catalysis to depollution. In this work, we used a sol–gel auto-combustion method to synthesize spinel-type MgCr2O4 nanoparticles by using fructose (FS), tartaric acid (TA), and hexamethylenetetramine (HMTA) as chelating/fuel agents. The optimal temperature treatment for the formation of impurity-free MgCr2O4 nanostructures was found to range from 500 to 750 °C. Fourier transform infrared (FTIR) spectroscopy was used to determine the lattice vibrations of the corresponding chemical bonds from octahedral and tetrahedral positions, and the optical band gap was calculated from UV–VIS spectrophotometry. The stabilization of the spinel phase was proved by X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) analysis. From field-emission scanning electron microscopy (FE-SEM), we found that the size of the constituent particles ranged from 10 to 40 nm. The catalytic activity of the as-prepared MgCr2O4 nanocrystals synthesized by using tartaric acid as a chelating/fuel agent was tested on the decomposition of hydrogen peroxide. In particular, we found that the nature of the chelating/fuel agent as well as the energy released during the auto-combustion played an important role on the structural, optical, and catalytic properties of MgCr2O4 nanoparticles obtained by this synthetic route.


2021 ◽  
Vol 12 (2) ◽  
pp. 1899-1906

This work is focusing on synthesizing the cobalt nanoferrite materials substituted by copper forming Co0.6Ni0.4-xCuxFe2O4 with x = 0.0, 0.1, and 0.3 using the sol-gel auto-combustion method. The phase analysis of XRD showed the spinel structure with the lattice parameter in the range 8.36-8.39 Å. FESEM image showed the grain size initially decreasing and then increasing with Cu concentration. The FTIR curve's two absorption bands in the specified range of frequency assured the spinel nano ferrite structure. The values of remanent ratios obtained from VSM showed their isotropic nature forming single domain ferrimagnetic particles.


Sign in / Sign up

Export Citation Format

Share Document