scholarly journals Nimesulide Poisoning in White-Rumped Vulture Gyps Bengalensis in Gujarat, India

Author(s):  
Kanthan Nambirajan ◽  
Subramanian Muralidharan ◽  
Aditya Roy Ashimkumar ◽  
Shashikant Jadhav

Abstract Catastrophic population decline of White-rumped Vulture due to use of a non-steroidal anti-inflammatory drug (NSAID), diclofenac throughout its distribution range is well documented. White-rumped Vulture was listed as Critically Endangered and only few thousands are remining. During 2019, there were two incidents of White-rumped Vulture death in Gujarat. In February 2019, two vultures were reported dead in Sanand, Gujarat and the death was suspected to be poisoning. Another two vultures were also reported to have died in Wild Ass Sanctuary, Dhrangadhra in October 2019. Tissues and gut contents of all four vultures were received for toxicological investigation and checked whether these vultures died due to NSAIDs. The tissues were analysed for thirteen NSAIDs. Of all the NSAIDs, nimesulide was detected in all the tissues analyzed in high concentration (17 - 1395 ng/g). Subsequently, these tissues were also screened for a set of mostly used toxic pesticides in India, and none of them was in toxic level. Visceral gout was also observed in all the four vultures during post-mortem. Elevated levels of nimesulide in tissues with clear symptoms of gout, indicated that the vultures died due to nimesulide poisoning. Although, other than diclofenac, many NSAIDs are toxic/suspected to be toxic to White-rumped Vultures, only nimesulide is reported with clear symptom of gout in wild dead White-rumped Vultures similar to diclofenac consistently in recent past. Considering the fact that nimesulide also acts similar to diclofenac leading to death in White-rumped Vulture, it seems that nimesulide is replacing diclofenac in case of White-rumped Vulture in Gujarat. Nimesulide is cause of concern in conservation of White-rumped Vultures. Hence, nimesulide should also be banned by the government for veterinary use in addition to diclofenac to conserve White-rumped Vulture in Indian subcontinent. Further, an effective system is recommended to be put in place to collect the tissues of dead Vultures for toxicological investigations, and eventual conservation of the critically endangered species.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Surya Prasad Sharma ◽  
Mirza Ghazanfarullah Ghazi ◽  
Suyash Katdare ◽  
Niladri Dasgupta ◽  
Samrat Mondol ◽  
...  

AbstractThe gharial (Gavialis gangeticus) is a critically endangered crocodylian, endemic to the Indian subcontinent. The species has experienced severe population decline during the twentieth century owing to habitat loss, poaching, and mortalities in passive fishing. Its extant populations have largely recovered through translocation programmes initiated in 1975. Understanding the genetic status of these populations is crucial for evaluating the effectiveness of the ongoing conservation efforts. This study assessed the genetic diversity, population structure, and evidence of genetic bottlenecks of the two managed populations inhabiting the Chambal and Girwa Rivers, which hold nearly 80% of the global gharial populations. We used seven polymorphic nuclear microsatellite loci and a 520 bp partial fragment of the mitochondrial control region (CR). The overall mean allelic richness (Ar) was 2.80 ± 0.40, and the observed (Ho) and expected (He) heterozygosities were 0.40 ± 0.05 and 0.39 ± 0.05, respectively. We observed low levels of genetic differentiation between populations (FST = 0.039, P < 0.05; G’ST = 0.058, P < 0.05 Jost’s D = 0.016, P < 0.05). The bottleneck analysis using the M ratio (Chambal = 0.31 ± 0.06; Girwa = 0.41 ± 0.12) suggested the presence of a genetic bottleneck in both populations. The mitochondrial CR also showed a low level of variation, with two haplotypes observed in the Girwa population. This study highlights the low level of genetic diversity in the two largest managed gharial populations in the wild. Hence, it is recommended to assess the genetic status of extant wild and captive gharial populations for planning future translocation programmes to ensure long-term survival in the wild.


2017 ◽  
Vol 29 (1) ◽  
pp. 55-70 ◽  
Author(s):  
VIBHU PRAKASH ◽  
TOBY H. GALLIGAN ◽  
SOUMYA S. CHAKRABORTY ◽  
RUCHI DAVE ◽  
MANDAR D. KULKARNI ◽  
...  

SummaryPopulations of the White-rumped Vulture Gyps bengalensis, Indian Vulture G. indicus and Slender-billed Vulture G. tenuirostris declined rapidly during the mid-1990s all over their ranges in the Indian subcontinent because of poisoning due to veterinary use of the non-steroidal anti-inflammatory drug diclofenac. This paper reports results from the latest in a series of road transect surveys conducted across northern, central, western and north-eastern India since the early 1990s. Results from the seven comparable surveys now available were analysed to estimate recent population trends. Populations of all three species of vulture remained at a low level. The previously rapid decline of White-rumped Vulture has slowed and may have reversed since the ban on veterinary use of diclofenac in India in 2006. A few thousand of this species, possibly up to the low tens of thousands, remained in India in 2015. The population of Indian Vulture continued to decline, though probably at a much slower rate than in the 1990s. This remains the most numerous of the three species in India with about 12,000 individuals in 2015 and a confidence interval ranging from a few thousands to a few tens of thousands. The trend in the rarest species, Slender-billed Vulture, which probably numbers not much more than 1,000 individuals in India, cannot be determined reliably.


2007 ◽  
Vol 17 (1) ◽  
pp. 63-77 ◽  
Author(s):  
MARTIN GILBERT ◽  
RICHARD T. WATSON ◽  
SHAKEEL AHMED ◽  
MUHAMMAD ASIM ◽  
JEFF A. JOHNSON

The provision of supplementary food at vulture restaurants is a well-established tool in the conservation of vulture species. Among their many applications, vulture restaurants are used to provide a safe food source in areas where carcasses are commonly baited with poisons. Rapid and extensive declines of vultures in the Indian subcontinent have been attributed to the toxic effects of diclofenac, a pharmaceutical used in the treatment of livestock, to which vultures are exposed while feeding on the carcasses of treated animals. A vulture restaurant was established at the Oriental White-backed Vulture Gyps bengalensis colony at Toawala, in Punjab province Pakistan, to test the effectiveness of the technique in modifying ranging behaviour and mortality at the colony. Six male vultures were fitted with satellite transmitters to describe variation in movement and home-range during periods when safe food was alternately available and withheld at the vulture restaurant. There was considerable variation in individual home-range size (minimum convex polygons, MCP, of 1,824 km2 to 68,930 km2), with birds occupying smaller home-ranges centred closer to the restaurant being more successful in locating the reliable source of food. Fixes showed that 3 of the tagged vultures fed at the vulture restaurant and the home-range of each bird declined following their initial visit, with a 23–59% reduction in MCP. Mean daily mortality during provisioning was 0.072 birds per day (8 birds in 111 days), compared with 0.387 birds per day (41 birds in 106 days) during non-provisioning control periods. Vultures tended to occupy greater home-ranges, cover greater distances each day and spend proportionately more time in the air during the late brooding and post-breeding seasons. Attendance at the vulture restaurant also declined during this period with fewer birds visiting less often and no tagged vultures visiting the vulture restaurant at all. These findings indicate that vulture restaurants can reduce, but not eliminate, vulture mortality through diclofenac exposure and represent a valuable interim measure in slowing vulture population decline locally until diclofenac can be withdrawn from veterinary use.


Zootaxa ◽  
2017 ◽  
Vol 4232 (4) ◽  
pp. 491 ◽  
Author(s):  
ANGELA M. ZANATA ◽  
FLÁVIO C.T. LIMA ◽  
FABIO DI DARIO ◽  
PEDRO GERHARD

Astyanax brucutu is described from the rio Pratinha, rio Paraguaçu basin, Bahia, Brazil. The new species is promptly distinguished from other characids by having four, rarely three, robust, rounded, and usualy tricuspid teeth on inner premaxillary series and similar teeth on dentary. The species is furthermore characterized by a series of unusual character states in the Characidae, including head blunt in lateral and dorsal views, longitudinal foreshortening of lower jaw, ventral margin of third infraorbital distinctly separated from horizontal limb of preopercle, leaving a broad area without superficial bones, mesethmoid anteroventrally expanded, and adductor mandibulae and primordial ligament remarkably developed. Analysis of gut contents of adults revealed the almost exclusive presence of crushed shells of tiny gastropods of the family Hydrobiidae. The robust anatomy of jaws, teeth, muscles and associated ligaments are likely adaptations to durophagy, a feeding strategy unusual among characids. Astyanax brucutu is known only from its type locality, an approximately 670 m long, transparent and isolated perennial epigean watercourse surrounded by subterranean or intermittent rivers. The distinctive combination of environmental features characterizing the area of occurrence of the new species is not observed elsewhere in the basin or adjacent basins. A series of severe anthropogenic impacts, associated with the restricted geographic range of the species, implies that A. brucutu should be regarded as Critically Endangered (CR) according to IUCN Red List Criteria. 


2021 ◽  
pp. 1-14
Author(s):  
BRUKTAWIT A. MAHAMUED ◽  
PAUL F. DONALD ◽  
NIGEL J. COLLAR ◽  
STUART J. MARSDEN ◽  
PAUL KARIUKI NDANG’ANG’A ◽  
...  

Summary Liben Lark Heteromirafra archeri is a ‘Critically Endangered’ species threatened by the loss and degradation of grassland at the Liben Plain, southern Ethiopia, one of only two known sites for the species. We use field data from nine visits between 2007 and 2019 and satellite imagery to quantify changes over time in the species’ abundance and in the extent and quality of its habitat. We estimate that the population fell from around 279 singing males (95% CL: 182–436) in 2007 to around 51 (14–144) in 2013, after which too few birds were recorded to estimate population size. Arable cultivation first appeared on the plain in the early 1990s and by 2019 more than a third of the plain had been converted to crops. Cultivation was initially confined to the fertile black soils but from 2008 began to spread into the less fertile red soils that cover most of the plain. Liben Larks strongly avoided areas with extensive bare ground or trees and bushes, but the extent of these did not change significantly over the survey period. A plausible explanation for the species’ decline is that grassland degradation, caused before 2007 by continuous high-pressure grazing by livestock, reduced its rates of reproduction or survival to a level that could not support its previous population. Since 2015, communal kalos (grazing exclosures) have been established to generate forage and other resources in the hope of also providing breeding habitat for Liben Larks. Grass height and density within four grassland kalos in 2018 greatly exceeded that in the surrounding grassland, indicating that the plain retains the potential to recover rapidly if appropriately managed. Improvement of grassland structure through the restitution of traditional and sustainable rangeland management regimes and the reversion of cereal agriculture to grassland are urgently needed to avert the species’ extinction.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 187 ◽  
Author(s):  
Nandadevi Cortes-Rodriguez ◽  
Michael Campana ◽  
Lainie Berry ◽  
Sarah Faegre ◽  
Scott Derrickson ◽  
...  

The Mariana Crow, or Åga (Corvus kubaryi), is a critically endangered species (IUCN -International Union for Conservation of Nature), endemic to the islands of Guam and Rota in the Mariana Archipelago. It is locally extinct on Guam, and numbers have declined dramatically on Rota to a historical low of less than 55 breeding pairs throughout the island in 2013. Because of its extirpation on Guam and population decline on Rota, it is of critical importance to assess the genetic variation among individuals to assist ongoing recovery efforts. We conducted a population genomics analysis comparing the Guam and Rota populations and studied the genetic structure of the Rota population. We used blood samples from five birds from Guam and 78 birds from Rota. We identified 145,552 candidate single nucleotide variants (SNVs) from a genome sequence of an individual from Rota and selected a subset of these to develop an oligonucleotide in-solution capture assay. The Guam and Rota populations were genetically differentiated from each other. Crow populations sampled broadly across their range on Rota showed significant genetic structuring – a surprising result given the small size of this island and the good flight capabilities of the species. Knowledge of its genetic structure will help improve management strategies to help with its recovery.


Author(s):  
Akshay Tanna ◽  
Daniel Fernando ◽  
Ramajeyam Gobiraj ◽  
Buddhi M. Pathirana ◽  
Sahan Thilakaratna ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 220
Author(s):  
Michele Bertoni Mann ◽  
Janira Prichula ◽  
Ícaro Maia Santos de Castro ◽  
Juliana Mello Severo ◽  
Michelle Abadie ◽  
...  

Melanophryniscus admirabilis (admirable red-belly toad) is a microendemic and critically endangered species found exclusively along 700 m of the Forqueta River, in a fragment of the Atlantic Forest of southern Brazil. One of the greatest concerns regarding the conservation of this species is the extensive use of pesticides in areas surrounding their natural habitat. In recent years, the adaptation and persistence of animal species in human-impacted environments have been associated with microbiota. Therefore, the present study aimed to characterize the oral bacterial community of wild M. admirabilis and to address the question of how this community might contribute to this toad’s adaptation in the anthropogenic environment as well as its general metabolic capabilities. A total of 11 oral samples collected from wild M. admirabilis were characterized and analyzed via high-throughput sequencing. Fragments of the 16S rRNA variable region 4 (V4) were amplified, and sequencing was conducted using an Ion Personal Genome Machine (PGM) System with 316 chips. A total of 181,350 sequences were obtained, resulting in 16 phyla, 34 classes, 39 orders, and 77 families. Proteobacteria dominated (53%) the oral microbiota of toads, followed by Firmicutes (18%), Bacteroidetes (17%), and Actinobacteria (5%). No significant differences in microbial community profile from among the samples were reported, which suggests that the low dietary diversity observed in this population may directly influence the bacterial composition. Inferences of microbiome function were performed using PICRUSt2 software. Important pathways (e.g., xenobiotic degradation pathways for pesticides and aromatic phenolic compounds) were detected, which suggests that the bacterial communities may serve important roles in M. admirabilis health and survival in the anthropogenic environment. Overall, our results have important implications for the conservation and management of this microendemic and critically endangered species.


Sign in / Sign up

Export Citation Format

Share Document