Assessment of the Effects of Ornamental Wetland Polyculture Combinations on Urban Sewage Treatment

Author(s):  
Min Wang ◽  
Yujue Zhou ◽  
Lin Xiang ◽  
Xiaoyang Ke ◽  
Hui Zhang ◽  
...  

Abstract Previous studies have shown that wetland plants can treat wastewater in a cost-effective and sustainable way, however, the studies on the performance of ornamental wetland plant diversity in treating urban sewage were scarce. Therefore, this study was conducted to assess and select wetland polyculture combination that was effective in urban sewage treatment in subtropical areas. We formed five combinations out of six ornamental wetland plant species including Thalia dealbata, Cyperus alternifolius, Iris pseudacorus, Lythrum sastlicaria, Nymphaea tetragona, and Zantedeschia aethiopica. The growth state and removal effects of each plant combination were systematically measured and assessed. The results indicated all the combinations exhibited remarkable total nitrogen (TN), total phosphorus (TP), ammonium nitrogen (NH­4+-N), and chemical oxygen demand chromium (CODcr) removal rate of 70.75%-77.67%, 63.86%-73.71%, 69.73%-76.85%, and 57.28%-75.69%, respectively. Additionally, pH was reduced to 7.54-8.00 in the sewage. The purification effect reached the best during 30-36th day. The comprehensive assessment showed the mixture of Thalia dealbata + Cyperus alternifolius, closely followed by Thalia dealbata + Cyperus alternifolius+ Lythrum sastlicaria, was highly effective at extracting various pollutants, and both of them could be used as favorable combinations to convert eutrophication and purify municipal wastewater. Linear regression showed that TP, TP, NH­4+-N, and CODcr. were significantly related to plant biomass, indicating that plant biomass essential indicator for screening purification plants. Our study highlighted the importance of plant diversity in biological wastewater treatment, however the competition between plants was suggested to take into consideration in future studies.

2020 ◽  
Vol 194 ◽  
pp. 04030
Author(s):  
Mengyin Chen ◽  
Weifeng Zeng ◽  
Guan Wang ◽  
Fangchun Lu ◽  
Jinjuan Zhang ◽  
...  

The constructed wetland project of tailwater from an urban sewage plant in central Zhejiang was selected to collect water samples in different seasons, and the samples were tested for chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN) and other indicators. The results showed that the operation effect of the constructed wetland project is good when the effluent from the sewage treatment plant meets the Class A discharge standard. Among them, the removal effect of TP was the best, with an average removal rate of 61.52%, reaching the standards of surface water class III and class IV in some tests. Besides, the removal effect of TP was stable and varies little with seasons. The removal rates of COD and TN were relatively low and varied greatly with seasons, which were higher in spring and summer than in autumn and winter, with a negative removal rate of TN in winter. This research provides practical data for optimizing the engineering design parameters and improving the operation management to promote the operation efficiency of the constructed wetland.


2019 ◽  
Vol 136 ◽  
pp. 06010 ◽  
Author(s):  
Xi Tian ◽  
Chunling Zhao ◽  
Xiaona Ji ◽  
Tiezhu Feng ◽  
Ying Liu ◽  
...  

Total organic carbon (TOC) and chemical oxygen demand (CODCr) are indicators of the degree of organic pollution in water. At present, CODCr is mainly used as an evaluation index in China, and the detection method of CODCr is more complicated and time-consuming than TOC. In this paper, it uses the Micro-Pressure Inner-Loop Bioreactor (MPR) to treat urban sewage, studies the treatment effect of MPR on organic pollutants, and further analyzes the correlation between TOC and CODCr. TOC and CODCr of municipal wastewater and MPR treated effluent were measured by total organic carbon analyzer and dichromate method respectively, and the degree of organic pollution of water samples was analyzed. The results showed that the average removal rates of TOC and CODCr in municipal wastewater were 83.54% and 90.81%, respectively. The theoretical correlation coefficient between TOC and CODCr in experimental raw water was only 0.7322. After MPR treatment, the correlation coefficient increased to 0.9534. For water samples with fixed contaminants and stable contents, TOC can be used to calculate water CODCr by linear fitting relationship.


2016 ◽  
Vol 74 (7) ◽  
pp. 1509-1517 ◽  
Author(s):  
Linan Zhu ◽  
Hailing He ◽  
Chunli Wang

The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m3•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m3•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d−1) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.


2019 ◽  
Vol 11 (8) ◽  
pp. 2284 ◽  
Author(s):  
Jin Xu ◽  
Peifang Wang ◽  
Yi Li ◽  
Lihua Niu ◽  
Zhen Xing

In this study, we examined the influence of the organic carbon-to-nitrogen ratio (chemical oxygen demand (COD/N)) and dissolved oxygen (DO) levels on the removal efficiency of pollutants and on the change in total microflora in the cyclic activated sludge system (CASS) in the Nyingchi prefecture in Tibet. The results demonstrated that the treatment performance was the best when the COD/N ratio was 7:1 or the DO levels were 2–2.5 mg/L in comparison with four different tested COD/N ratios (4:1, 5:1, 7:1, and 10:1) and DO concentrations (0.5–1, 1–2, 2–2.5, and 2.5–3.5 mg/L). The treatment performance can be explained by the relative operational taxonomic unit richness and evenness of the microbial communities in activated sludge. Evident microbial variance was observed, especially different COD/N ratios and DO concentrations, which were conducive to the disposal of urban sewage in plateaus. The results help to understand sewage treatment under different COD/N ratios or DO concentrations on plateaus. This work provides practical guidance for the operation of any wastewater treatment plant on a plateau.


2012 ◽  
Vol 66 (12) ◽  
pp. 2546-2555 ◽  
Author(s):  
Miyoung Choi ◽  
Dong Whan Choi ◽  
Jung Yeol Lee ◽  
Young Suk Kim ◽  
Bun Su Kim ◽  
...  

Growing attention is given to pharmaceutical residue in the water environment. It is known that pharmaceuticals are able to survive from a series of wastewater treatment processes. Concerns regarding pharmaceutical residues are attributed to the fact that they are being detected in water and sediment environment ubiquitously. Pharmaceutical treatment using a series of wastewater treatment processes of the DAF (dissolved air flotation)–MBR (membrane bioreactor)–ozone oxidation was conducted in the study. DAF, without addition of coagulant, could remove CODcr (chemical oxygen demand by Cr) up to over 70%, BOD 73%, SS 83%, T-N 55%, NH4+ 23%, and T-P 65% in influent of municipal wastewater. Average removal rates of water quality parameters by the DAF–MBR system were very high, e.g. CODcr 95.88%, BOD5 99.66%, CODmn (chemical oxygen demand by Mn) 93.63%, T-N 69.75%, NH4-N 98.46%, T-P 78.23%, and SS 99.51%, which satisfy effluent water quality standards. Despite the high removal rate of the wastewater treatment system, pharmaceuticals were eliminated to be about 50–99% by the MBR system, depending on specific pharmaceuticals. Ibuprofen was well removed by MBR system up to over 95%, while removal rate of bezafibrate ranged between 50 and 90%. With over 5 mg/l of ozone oxidation, most pharmaceuticals which survived the DAF–MBR process were removed completely or resulted in very low survival rate within the range of few micrograms per litre. However, some pharmaceuticals such as bezafibrate and naproxen tended to be resistant to ozone oxidation.


2012 ◽  
Vol 263-266 ◽  
pp. 510-515
Author(s):  
Li Mei Dong ◽  
Ying Chang Zhou ◽  
Ze Chi Han ◽  
Fei Wang ◽  
Yong Qing Wang ◽  
...  

The device is composed of solar battery, power automatic switching, high pressure booster inverter, dielectric-barrier discharge type ozonizer, air compressor and microporous aerator components, whicn is powered by the double power suppl y modes including the solar battery and the city electricity. In the conditions of insufficient illumination or rainy weather, power can switch to the city electricity automatically. The article introduces the composition and working principle of solar ozonizer. The experiment is respectively done in the sample of the second phase of water from BaoDingYingdingzhuang sewage plant, the urban river water and the dyeing effluent with 1500 ml.The power of the solar energy ozonizer is 18W and ozone production is 25 mg/min. The experiment results show that the removal rate of Fecal coliform, Chroma and Chemical Oxygen Demand (COD) are obviously improved. Especially, the removal effect of Fecal coliform and Chroma is very significant. The experiment indicates that the content of NH3-N has increased with the growth of ozone contact time.


2013 ◽  
Vol 361-363 ◽  
pp. 601-605
Author(s):  
Ji Ku Zhang ◽  
Yang Yang Li ◽  
Chen Zhang ◽  
Yan Bin Yang

By treating the secondary effluent of Sanbaotun sewage treatment plant in Fushun with the CS type UV Sterilizer, the experiment researches the influence on the removal rate which includes the factors of turbidity, chromaticity, initial E.coli concentration of raw water, UV dose. The results show that the turbidity does not influence on UV disinfection efficiency with the turbidity from 1.5NTU to 3.8NTU. In the low-dose UV disinfection process, the influent sewage turbidity should under 4NTU to ensure the disinfection efficiency. Low chromaticity does not affect the UV disinfection efficiency, with the influent sewage chromaticity is under 15 degrees.The initial E. coli has a certain impact on little doses of UV disinfection with the concentration from 175 × 104 A/ L to 230 × 104 A/ L, no impact on high doses of UV disinfection。


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yi Wu ◽  
Jun Dai ◽  
Qiong Wan ◽  
Guobin Tian ◽  
Dongyang Wei

Filler plays an important role in biological sewage treatment technology. In the purification of urban sewage river, the single sponge iron filler is easy to harden. The combination of sponge iron and ceramsite can hinder the hardening and improve the removal efficiency. In this paper, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the fillers. The removal efficiency experiments were carried out through the self-designed biological aerated filter (BAF) reactor with sponge iron and ceramsite mixed fillers, and the microorganisms attached to the surface of the biological fillers were qualitatively and quantitatively identified through 16S rDNA. The results indicate that the presence of Fe3O4, Fe2O3, Fe3C, and Fe2CO3 in sponge iron determines that sponge iron has strong reducibility and provides electrons for efficient denitrification. NaAlSi3O8 in ceramsite filler plays a significant role in phosphorus adsorption. In #3, #4, and #5 reactors (the mass ratios of sponge iron and ceramsite were 1 : 1, 3 : 1, and 1 : 3, resp.), the removal efficiencies of mixed fillers are good on chemical oxygen demand (COD), total phosphorus (TP), and nitrogen (N), and the more the ceramsite fillers in the reactors are, the higher the microbial abundance and diversity are. The mixture of sponge iron and ceramsite can be used to purify urban sewage river. A scientific basis to purify the polluted water body of urban rivers in situ is thus provided.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1054 ◽  
Author(s):  
Xueyuan Bai ◽  
Xianfang Zhu ◽  
Haibo Jiang ◽  
Zhongqiang Wang ◽  
Chunguang He ◽  
...  

Constructed wetlands can play an active role in improving the water quality of urban rivers. In this study, a sequential series system of the floating-bed constructed wetland (FBCW), horizontal subsurface flow constructed wetland (HSFCW), and surface flow constructed wetland (SFCW) were constructed for the urban river treatment in the cold regions of North China, which gave full play to the combined advantages. In the Yitong River, the designed capacity and the hydraulic loading of the system was 100 m3/d and 0.10 m3/m2d, respectively. The hydraulic retention time was approximately 72 h. The monitoring results, from April to October in 2016, showed the multiple wetland ecosystem could effectively remove chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), total phosphate (TP), and suspended solids (SS) at average removal rates of 74.79%, 80.90%, 71.12%, 78.44%, and 91.90%, respectively. The removal rate of SS in floating-bed wetland was the largest among all the indicators (80.24%), which could prevent the block of sub-surface flow wetland effectively. The sub-surface flow wetland could remove the NH4-N, TN, and TP effectively, and the contribution rates were 79.20%, 64.64%, and 81.71%, respectively. The surface flow wetland could further purify the TN and the removal rate of TN could reach 23%. The total investment of this ecological engineering was $12,000. The construction cost and the operation cost were $120 and $0.02 per ton of polluted water, which was about 1/3 to 1/5 and 1/6 to 1/3 of the conventional sewage treatment, respectively. The results of this study provide a technical demonstration of the restoration of polluted water in urban rivers in northern China.


2015 ◽  
Vol 737 ◽  
pp. 635-638
Author(s):  
Ke Zhao ◽  
Zheng Kong

The general existing low temperature problem in winter of north-city sewage treatment plant in the process of waste water treatment seriously affect the efficiency of the work. The research objective of this paper is to conduct investigate in the application of AICS method in Jilin Province, a sewage treatment plant engineering example has been employed to monitor the effluent of the indicators of sewage treatment under the low temperature condition during the winter the winter low temperature under the condition of sewage treatment plant effluent of the indicators; to understand the operation situation of sewage treatment plant, and to study the efficiency of hydrolysis - AICS processing waste-water. The result shows that: hydrolysis - AICS process works well in low temperature condition, the per TN removal rate is 76.79%, average removal rate of NH3 - N is 85.76%, average TP removal rate was 93.4%, the average COD removal rate was 90.6%. The effluent meet the national level A discharge standard requirements of "urban sewage treatment plant pollutant discharge standard". And through the retrenchment of the second pond and other ancillary equipment, Hydrolysis-AICS process could efficiently reduce the costs. Besides, the advantages of Hydrolysis-AICS process also include occupying small area, and operating easily and simply. Therefore Hydrolysis-AICS process is very helpful to achieve the sewage discharging standard in the northern towns.


Sign in / Sign up

Export Citation Format

Share Document