scholarly journals Endothelial Nitric Oxide Synthase (eNOS) Gene Expression determine the abundance of circulatory Endothelial Progenitor Cells (EPC) in Premature Coronary Artery Disease (PCAD) Patients

2020 ◽  
Author(s):  
Atanu Sen ◽  
Kranthi Vemparala ◽  
Ambuj Roy ◽  
Vinay Kumar Bahl ◽  
Dorairaj Prabhakaran ◽  
...  

Abstract Objectives Several studies has reported a reduced circulatory level and impaired functionality of EPCs in CAD patients and the role of eNOS in relation with reduced circulatory level of EPC and their impaired functionality has been revealed by in vitro and animal studies. However EPC’s eNOS gene expression profile in in vivo condition in PCAD patients is yet to be revealed as the prevalence of CAD at young age is markedly increased in developing countries. Our previous study has already reported a significantly reduced circulatory level of EPC in PCAD patients compared to control subjects and in continuation of that finding, present study aimed to investigate the eNOS gene expression of EPC in same study subjects as well as to establish the association between EPC’s eNOS gene expression and reduced circulatory level of EPC in PCAD patients. Results Reduced eNOS gene expression in EPC from PCAD patients compared to healthy controls were found (0.998±0.096/1.063±0.107) with a p-value of 0.002 and this difference was persistent even after adjusting for confounding factors (p=0.002). A positive correlation was found between eNOS gene expression and level of CD34+/KDR+ cells in circulation (r = 0.234 and p = 0.0664); data from previous study.

2020 ◽  
Author(s):  
Atanu Sen ◽  
Kranthi Vemparala ◽  
Ambuj Roy ◽  
Vinay Kumar Bahl ◽  
Dorairaj Prabhakaran ◽  
...  

Abstract Objectives: Several studies has reported a reduced circulatory level and impaired functionality of EPCs in coronary artery disease (CAD) patients and the role of endothelial nitric oxide Synthase (eNOS) in relation with reduced circulatory level of EPC and their impaired functionality has been revealed by in vitro and animal studies. However EPC’s eNOS gene expression profile in in vivo condition in PCAD patients is yet to be revealed as the prevalence of CAD at young age is markedly increased in developing countries. Our previous study has already reported a significantly reduced circulatory level of EPC in PCAD patients compared to control subjects and in continuation of that finding, present study aimed to investigate the eNOS gene expression of EPC in same study subjects as well as to establish the association between EPC’s eNOS gene expression and reduced circulatory level of EPC in PCAD patients. Results: Reduced eNOS gene expression in EPC from PCAD patients compared to healthy controls were found (0.998±0.096/1.063±0.107) with a p-value of 0.002 and this difference was persistent even after adjusting for confounding factors (p=0.002). A positive correlation was found between eNOS gene expression and level of EPC in circulation (r = 0.234 and p = 0.0664); data from previous study.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4405
Author(s):  
Tzu-Chien Chen ◽  
Yu-Yu Ho ◽  
Rui-Chian Tang ◽  
Yong-Chen Ke ◽  
Jhih-Ni Lin ◽  
...  

Obesity is characterized as abnormal or excessive fat accumulation harmful to one’s health, linked to hormonal imbalances, cardiovascular illness, and coronary artery disease. Since the disease stems mainly from overconsumption, studies have aimed to control intestinal absorption as a route for treatment. In this study, chitosan-thioglycolic acid (CT) was developed as a physical barrier in the gastrointestinal tracts to inhibit nutrient uptake. CT exhibits a superior mucoadhesive property compared to chitosan both in vitro and in vivo for the ability to form disulfide bonds with the intestinal mucosa. For CT as a potential drug delivery platform, hesperidin, a herb for bodyweight control in traditional Chinese medication, is encapsulated in CT and can be released consistently from this absorption barrier. In animal studies, CT encapsulated with hesperidin (CTH) not only results in a weight-controlling effect but limits adipose accumulation by hindering absorption, suggesting a potential role in obesity treatment. Neither CT nor CTH exhibit cytotoxicity or produce adverse immunological reactions in vivo.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Milad Abolhalaj ◽  
Mahsa M. Amoli ◽  
Parvin Amiri

Subject & Aim. Endothelial nitric oxide synthase (eNOS) is one of the most important candidate genes in CAD. A functional polymorphism within eNOS gene is a 27 bp VNTR on its intron 4 which has been shown to be associated with various diseases. In this study we investigated eNOS VNTR polymorphism in addition to eNOS gene expression profile in patients with CAD. Material and Methods. The study comprised patients with angiographically confirmed CAD (CAD+) and individuals with normal coronary as CAD−. eNOS VNTR polymorphism frequencies were determined in both groups. In addition eNOS gene expression profile was examined using a quantitative real-time PCR. Results. We have found that aa genotype was significantly increasing the risk of CAD in our patients (aa versus ab + bb, , ; 95% CI: = 0.98 to 16.2). The differences in eNOS expression were not significant between patients and normal group; however in CAD+ patients eNOS expression was higher than the expression level of patients carrying other genotypes (). Conclusion. We have observed that eNOS gene polymorphism was associated with CAD in angiography-confirmed patients. However, the difference in eNOS gene expression was not statistically significant between patients and control which might be due to the contribution of other confounding factors which require further investigations.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 159
Author(s):  
Vladimir Khavinson ◽  
Natalia Linkova ◽  
Ekaterina Kozhevnikova ◽  
Svetlana Trofimova

The EDR peptide (Glu-Asp-Arg) has been previously established to possess neuroprotective properties. It activates gene expression and synthesis of proteins, involved in maintaining the neuronal functional activity, and reduces the intensity of their apoptosis in in vitro and in vivo studies. The EDR peptide interferes with the elimination of dendritic spines in neuronal cultures obtained from mice with Alzheimer’s (AD) and Huntington’s diseases. The tripeptide promotes the activation of the antioxidant enzyme synthesis in the culture of cerebellum neurons in rats. The EDR peptide normalizes behavioral responses in animal studies and improves memory issues in elderly patients. The purpose of this review is to analyze the molecular and genetics aspects of the EDR peptide effect on gene expression and synthesis of proteins involved in the pathogenesis of AD. The EDR peptide is assumed to enter cells and bind to histone proteins and/or ribonucleic acids. Thus, the EDR peptide can change the activity of the MAPK/ERK signaling pathway, the synthesis of proapoptotic proteins (caspase-3, p53), proteins of the antioxidant system (SOD2, GPX1), transcription factors PPARA, PPARG, serotonin, calmodulin. The abovementioned signaling pathway and proteins are the components of pathogenesis in AD. The EDR peptide can be AD.


2000 ◽  
Vol 279 (5) ◽  
pp. G1023-G1030 ◽  
Author(s):  
Vijay Shah ◽  
Alex F. Chen ◽  
Sheng Cao ◽  
Helen Hendrickson ◽  
Deb Weiler ◽  
...  

Endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) contributes to hepatic vascular homeostasis. The aim of this study was to examine whether delivery of an adenoviral vector encoding eNOS gene to liver affects vasomotor function in vivo and the mechanism of NO production in vitro. Rats were administered adenoviruses encoding β-galactosidase (AdCMVLacZ) or eNOS (AdCMVeNOS) via tail vein injection and studied 1 wk later. In animals transduced with AdCMVLacZ, β-galactosidase activity was increased in the liver, most prominently in hepatocytes. In AdCMVeNOS-transduced animals, eNOS protein levels and catalytic activity were significantly increased. Overexpression of eNOS diminished baseline perfusion pressure and constriction in response to the α1-agonist methoxamine in the perfused liver. Transduction of cultured hepatocytes with AdCMVeNOS resulted in the targeting of recombinant eNOS to a perinuclear distribution and binding with the NOS-activating protein heat shock protein 90. These events were associated with increased ionomycin-stimulated NO release. In summary, this is the first study to demonstrate successful delivery of the recombinant eNOS gene to liver in vivo and in vitro with ensuing NO production.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2008 ◽  
Vol 46 (01) ◽  
Author(s):  
F Moriconi ◽  
H Christiansen ◽  
H Christiansen ◽  
N Sheikh ◽  
J Dudas ◽  
...  

2020 ◽  
Vol 139 ◽  
pp. 153-160
Author(s):  
S Peeralil ◽  
TC Joseph ◽  
V Murugadas ◽  
PG Akhilnath ◽  
VN Sreejith ◽  
...  

Luminescent Vibrio harveyi is common in sea and estuarine waters. It produces several virulence factors and negatively affects larval penaeid shrimp in hatcheries, resulting in severe economic losses to shrimp aquaculture. Although V. harveyi is an important pathogen of shrimp, its pathogenicity mechanisms have yet to be completely elucidated. In the present study, isolates of V. harveyi were isolated and characterized from diseased Penaeus monodon postlarvae from hatcheries in Kerala, India, from September to December 2016. All 23 tested isolates were positive for lipase, phospholipase, caseinase, gelatinase and chitinase activity, and 3 of the isolates (MFB32, MFB71 and MFB68) showed potential for significant biofilm formation. Based on the presence of virulence genes, the isolates of V. harveyi were grouped into 6 genotypes, predominated by vhpA+ flaB+ ser+ vhh1- luxR+ vopD- vcrD+ vscN-. One isolate from each genotype was randomly selected for in vivo virulence experiments, and the LD50 ranged from 1.7 ± 0.5 × 103 to 4.1 ± 0.1 × 105 CFU ml-1. The expression of genes during the infection in postlarvae was high in 2 of the isolates (MFB12 and MFB32), consistent with the result of the challenge test. However, in MFB19, even though all genes tested were present, their expression level was very low and likely contributed to its lack of virulence. Because of the significant variation in gene expression, the presence of virulence genes alone cannot be used as a marker for pathogenicity of V. harveyi.


Sign in / Sign up

Export Citation Format

Share Document