scholarly journals Comparative gene expression profiling of mouse ovaries upon stimulation with natural equine chorionic gonadotropin (N-eCG) and tethered recombinant-eCG (R-eCG)

2020 ◽  
Author(s):  
Kwan-Sik Min ◽  
Jong-Ju Park ◽  
So-Yun Lee ◽  
Munkhzaya Byambaragchaa ◽  
Myung-Hwa Kang

Abstract Background: Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of natural eCG (N-eCG) and recombinant eCG (R-eCG). This study aimed to investigate the gene expression profiles of mouse ovaries upon stimulation with N-eCG and R-eCG produced from CHO-suspension (CHO-S) cells. R-eCG gene was constructed and transfected into CHO-S cells and quantified. Subsequently, we determined the metabolic clearance rate (MCR) of N-eCG and R-eCG up to 24 h after intravenous administration through the mice tail vein and identified differentially expressed genes in both ovarian tissues, via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC).Results: R-eCG was markedly expressed initially after transfection and maintained until recovery on day 9. Glycan chains were substantially modified in R-eCG protein produced from CHO-S cells and eliminated through PNGase F treatment. The MCR was higher for R-eCG than for N-eCG, and no significant difference was observed after 60 min. Notwithstanding their low concentrations, R-eCG and N-eCG were detected in the blood at 24h post-injection. Microarray analysis of ovarian tissue revealed that 20 of 12,816 genes assessed therein were significantly up-regulated and 43 genes were down-regulated by >2-fold in the group that received R-eCG (63 [0.49%] differentially regulated genes in total). The microarray results were concurrent with and hence validated by those of RT-PCR, qRT-PCR, and IHC analyses.Conclusions: The present results indicate that R-eCG can be adequately produced through a cell-based expression system through post-translational modification of eCG and can induce ovulation in vivo. These results provide novel insights into the molecular mechanisms underlying the up- or down-regulation of specific ovarian genes and the production of R-eCG with enhanced biological activity in vivo.

2020 ◽  
Author(s):  
Kwan-Sik Min ◽  
Jong-Ju Park ◽  
So-Yun Lee ◽  
Munkhzaya Byambaragchaa ◽  
Myung-Hwa Kang

Abstract Background: Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of native eCG and recombinant eCG (rec-eCG). This study aimed to investigate the gene expression profiles of mouse ovaries upon stimulation with native eCG and rec-eCG produced from CHO-suspension (CHO-S) cells. eCG and rec-eCG were cloned and transfected into CHO-S cells and quantified. Thereafter, we determined the metabolic clearance rate (MCR) of native eCG and rec-eCG up to 24 h after intravenous administration through the tail vein and identified differentially expressed genes in both ovarian tissues, via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC).Results: Rec-eCG was markedly up-regulated initially after transfection and maintained until recovery on day 9. Oligosaccharide chains were substantially modified in rec-eCG protein produced from CHO-S cells and eliminated through PNGase F treatment. The MCR was slightly lower for rec-eCG than for eCG, and no significant difference was observed after 60 min. Notwithstanding their low concentration, rec-eCG and native eCG were detected in the blood at 24h post-injection. Microarray analysis of ovarian tissue revealed that 20 of 12,816 genes assessed therein were significantly up-regulated and 43 genes were down-regulated by >2-fold in the group receiving rec-eCG (63 [0.49%] differentially regulated genes in total). The microarray results were concurrent with and hence validated by those of RT-PCR, qRT-PCR, and IHC analyses.Conclusions: The present results indicate that rec-eCG can be adequately produced through a cell-based expression system through post-translational modification of eCG and can induce ovulation in vivo. These results provide novel insights into the molecular mechanisms underlying the up- or down-regulation of specific ovarian genes and the production of rec-eCG with enhanced biological activity in vivo.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kwan-Sik Min ◽  
Jong-Ju Park ◽  
So-Yun Lee ◽  
Munkhzaya Byambaragchaa ◽  
Myung-Hwa Kang

Abstract Background Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of natural eCG (N-eCG) and recombinant eCG (R-eCG). This study aimed to investigate the gene expression profiles of mouse ovaries upon stimulation with N-eCG and R-eCG produced from CHO-suspension (CHO-S) cells. R-eCG gene was constructed and transfected into CHO-S cells and quantified. Subsequently, we determined the metabolic clearance rate (MCR) of N-eCG and R-eCG up to 24 h after intravenous administration through the mice tail vein and identified differentially expressed genes in both ovarian tissues, via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Results R-eCG was markedly expressed initially after transfection and maintained until recovery on day 9. Glycan chains were substantially modified in R-eCG protein produced from CHO-S cells and eliminated through PNGase F treatment. The MCR was higher for R-eCG than for N-eCG, and no significant difference was observed after 60 min. Notwithstanding their low concentrations, R-eCG and N-eCG were detected in the blood at 24 h post-injection. Microarray analysis of ovarian tissue revealed that 20 of 12,816 genes assessed therein were significantly up-regulated and 43 genes were down-regulated by > 2-fold in the group that received R-eCG (63 [0.49%] differentially regulated genes in total). The microarray results were concurrent with and hence validated by those of RT-PCR, qRT-PCR, and IHC analyses. Conclusions The present results indicate that R-eCG can be adequately produced through a cell-based expression system through post-translational modification of eCG and can induce ovulation in vivo. These results provide novel insights into the molecular mechanisms underlying the up- or down-regulation of specific ovarian genes and the production of R-eCG with enhanced biological activity in vivo.


2020 ◽  
Author(s):  
kwan-sik Min ◽  
Jong-Ju Park ◽  
So-Yun Lee ◽  
Munkhzaya Byambaragchaa ◽  
Myung-Hwa Kang

Abstract Background: Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of natural eCG (N-eCG) and recombinant eCG (R-eCG). This study aimed to investigate the gene expression profiles of mouse ovaries upon stimulation with N-eCG and R-eCG produced from CHO-suspension (CHO-S) cells. R-eCG gene was constructed and transfected into CHO-S cells and quantified. Subsequently, we determined the metabolic clearance rate (MCR) of N-eCG and R-eCG up to 24 h after intravenous administration through the mice tail vein and identified differentially expressed genes in both ovarian tissues, via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Results: R-eCG was markedly expressed initially after transfection and maintained until recovery on day 9. Glycan chains were substantially modified in R-eCG protein produced from CHO-S cells and eliminated through PNGase F treatment. The MCR was higher for R-eCG than for N-eCG, and no significant difference was observed after 60 min. Notwithstanding their low concentrations, R-eCG and N-eCG were detected in the blood at 24h post-injection. Microarray analysis of ovarian tissue revealed that 20 of 12,816 genes assessed therein were significantly up-regulated and 43 genes were down-regulated by >2-fold in the group that received R-eCG (63 [0.49%] differentially regulated genes in total). The microarray results were concurrent with and hence validated by those of RT-PCR, qRT-PCR, and IHC analyses. Conclusions: The present results indicate that R-eCG can be adequately produced through a cell-based expression system through post-translational modification of eCG and can induce ovulation in vivo. These results provide novel insights into the molecular mechanisms underlying the up- or down-regulation of specific ovarian genes and the production of R-eCG with enhanced biological activity in vivo.


2020 ◽  
Author(s):  
kwan-sik Min ◽  
Jong-Ju Park ◽  
So-Yun Lee ◽  
Munkhzaya Byambaragchaa ◽  
Myung-Hwa Kang

Abstract Background: Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of natural eCG (N-eCG) and recombinant eCG (R-eCG). This study aimed to investigate the gene expression profiles of mouse ovaries upon stimulation with N-eCG and R-eCG produced from CHO-suspension (CHO-S) cells. R-eCG gene was constructed and transfected into CHO-S cells and quantified. Subsequently, we determined the metabolic clearance rate (MCR) of N-eCG and R-eCG up to 24 h after intravenous administration through the mice tail vein and identified differentially expressed genes in both ovarian tissues, via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Results: R-eCG was markedly expressed initially after transfection and maintained until recovery on day 9. Glycan chains were substantially modified in R-eCG protein produced from CHO-S cells and eliminated through PNGase F treatment. The MCR was slightly lower for R-eCG than for N-eCG, and no significant difference was observed after 60 min. Notwithstanding their low concentrations, R-eCG and N-eCG were detected in the blood at 24h post-injection. Microarray analysis of ovarian tissue revealed that 20 of 12,816 genes assessed therein were significantly up-regulated and 43 genes were down-regulated by >2-fold in the group that received R-eCG (63 [0.49%] differentially regulated genes in total). The microarray results were concurrent with and hence validated by those of RT-PCR, qRT-PCR, and IHC analyses. Conclusions: The present results indicate that R-eCG can be adequately produced through a cell-based expression system through post-translational modification of eCG and can induce ovulation in vivo. These results provide novel insights into the molecular mechanisms underlying the up- or down-regulation of specific ovarian genes and the production of R-eCG with enhanced biological activity in vivo.


2020 ◽  
Author(s):  
Kwan-Sik Min ◽  
Jong-Ju Park ◽  
So-Yun Lee ◽  
Munkhzaya Byambaragchaa ◽  
Myung-Hwa Kang

Abstract Background:Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of natural eCG (N-eCG) and recombinant eCG (R-eCG). This study aimed to investigate the gene expression profiles of mouse ovaries upon stimulation with N-eCG and R-eCG produced from CHO-suspension (CHO-S) cells. R-eCG gene was constructed and transfected into CHO-S cells and quantified. Subsequently, we determined the metabolic clearance rate (MCR) of N-eCG and R-eCG up to 24 h after intravenous administration through the mice tail vein and identified differentially expressed genes in both ovarian tissues, via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC).Results:R-eCG was markedly expressed initially after transfection and maintained until recovery on day 9. Glycan chains were substantially modified in R-eCG protein produced from CHO-S cells and eliminated through PNGase F treatment.The MCR was higher for R-eCG than for N-eCG, and no significant difference was observed after 60 min. Notwithstanding their low concentrations, R-eCG and N-eCG were detected in the blood at 24h post-injection. Microarray analysis of ovarian tissue revealed that 20 of 12,816 genes assessed therein were significantly up-regulated and 43 genes were down-regulated by >2-fold in the group that received R-eCG (63 [0.49%] differentially regulated genes in total). The microarray results were concurrent with and hence validated by those of RT-PCR, qRT-PCR, and IHC analyses.Conclusions:The present results indicate that R-eCG can be adequately produced through a cell-based expression system through post-translational modification of eCG and can induce ovulation in vivo. These results provide novel insights into the molecular mechanisms underlying the up- or down-regulation of specific ovarian genes and the production of R-eCG with enhanced biological activity in vivo.


2020 ◽  
Author(s):  
kwan-sik Min ◽  
Jong-Ju Park ◽  
So-Yun Lee ◽  
Munkhzaya Byambaragchaa ◽  
Myung-Hwa Kang

Abstract Background: Equine chorionic gonadotropin (eCG) induces super-ovulation in laboratory animals. Notwithstanding its extensive usage, limited information is available regarding the differences between the in vivo effects of natural eCG (N-eCG) and recombinant eCG (R-eCG). This study aimed to investigate the gene expression profiles of mouse ovaries upon stimulation with N-eCG and R-eCG. R-eCG gene was cloned and transfected into CHO-suspension (CHO-S) cells and quantified. Thereafter, we determined the metabolic clearance rate (MCR) of N-eCG and R-eCG up to 24 h after intravenous administration through the tail vein and identified differentially expressed genes in both ovarian tissues, via quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Results: R-eCG was markedly expressed initially after transfection and maintained until recovery on day 9. Oligosaccharide glycans were eliminated approximately 10 kDa through PNGase F treatment in R-eCG protein. The MCR was slightly lower for R-eCG than for N-eCG, and no significant difference was observed after 60 min. Notwithstanding their low concentration, R-eCG and N-eCG were detected in the blood at 24h post-injection. Microarray analysis of ovarian tissue revealed that 20 of 12,816 genes assessed therein were significantly up-regulated and 43 genes were down-regulated by >2-fold in the group receiving R-eCG (63 [0.49%] differentially regulated genes in total). The microarray results were concurrent with and hence validated by those of RT-PCR, qRT-PCR, and IHC analyses. Conclusions: The present results indicate that R-eCG can be adequately produced through a cell-based expression system through post-translational modification of eCG and can induce ovulation in vivo . These results provide novel insights into the molecular mechanisms underlying the up- or down-regulation of specific ovarian genes and the production of R-eCG with enhanced biological activity in vivo.


Blood ◽  
2006 ◽  
Vol 107 (9) ◽  
pp. 3520-3526 ◽  
Author(s):  
Manoj M. Pillai ◽  
Mineo Iwata ◽  
Norihiro Awaya ◽  
Lynn Graf ◽  
Beverly Torok-Storb

The marrow microenvironment consists of several different interacting cell types, including hematopoietic-derived monocyte/macrophages and nonhematopoietic-derived stromal cells. Gene-expression profiles of stromal cells and monocytes cultured together differ from those of each population alone. Here, we report that CXCL7 gene expression, previously described as limited to the megakaryocyte lineage, is expressed by monocytes cocultured with stromal cells. CXCL7 gene expression was confirmed by quantitative reverse transcriptase–polymerase chain reaction (RT-PCR), and secretion of protein was detected by enzyme-linked immunosorbent assay (ELISA) and Western blot. At least 2 stromal-derived activities, one yet to be identified, were required for optimal expression of CXCL7 by monocytes. NAP-2, the shortest form of CXCL7 detected in the coculture media, was confirmed to decrease the size and number of CFU-Meg colonies. The propeptide LDGF, previously reported to be mitogenic for fibroblasts, was not secreted by stimulated monocytes. The re-combinant form of LDGF produced in a prokaryotic expression system did not have biologic activity in our hands. The monocytic source of CXCL7 was also detected by immunohistochemistry in normal bone marrow biopsies, indicating an in vivo function. We conclude that stromal-stimulated monocytes can serve as an additional source for CXCL7 peptides in the microenvironment and may contribute to the local regulation of megakaryocytopoiesis.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii294-iii295
Author(s):  
Jovana Pavisic ◽  
Chankrit Sethi ◽  
Chris Jones ◽  
Stergios Zacharoulis ◽  
Andrea Califano

Abstract Diffuse intrinsic pontine glioma (DIPG) remains a fatal disease with no effective drugs to date. Mutation-based precision oncology approaches are limited by lack of targetable mutations and genetic heterogeneity. We leveraged systems biology methodologies to discover common targetable disease drivers—master regulator proteins (MRs)—in DIPG to expand treatment options. Using the metaVIPER algorithm, we interrogated an integrated low grade glioma and GBM gene regulatory network with 31 DIPG-gene expression signatures to identify tumor-specific MRs by differential expression of their transcriptional targets. Unsupervised clustering identified MR signatures of upregulated activity in RRM2/TOP2A in 13 patients, CD3D in 5 patients, and MMP7, TACSTD2, RAC2 and SLC15A1/SLC34A2 in individual patients, all of which can be targeted. Notably, intratumoral administration of etoposide by convection enhanced delivery was effective in murine proneural gliomas in which TOP2 was identified as a MR while RRM2—targetable by drugs such as cladribine—has been shown to be a positive regulator of glioma progression whose knock-down inhibits tumor growth. We also prioritized drugs by their ability to reverse MR-activity signatures using a large drug-perturbation database. Patients clustered by predicted drug sensitivities with distinct groups of tumors predicted to respond to proteasome inhibitors, Thiotepa or Volasertib all of which have early evidence in treating gliomas. We will refine this analysis in a multi-institutional study of >100 patient gene expression profiles to define MR signatures driving known biological/molecular disease subtypes, use DIPG cell lines recapitulating common MR architectures to optimize therapy prioritization, and validate our findings in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Risa Okada ◽  
Shin-ichiro Fujita ◽  
Riku Suzuki ◽  
Takuto Hayashi ◽  
Hirona Tsubouchi ◽  
...  

AbstractSpaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (μg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S726-S726
Author(s):  
April Nguyen ◽  
Vinathi Polamraju ◽  
Truc T Tran ◽  
Diana Panesso-Botero ◽  
Ayesha Khan ◽  
...  

Abstract Background Daptomycin (DAP) is a lipopeptide antibiotic targeting membrane anionic phospholipids (APLs) at the division septum, and resistance (DAP-R) has been linked to mutations in genes encoding i) the LiaFSR stress response system or its effector LiaX, and ii) cardiolipin synthase (Cls). Activation of the E. faecalis (Efs) LiaFSR response is associated with DAP-R and redistribution of APL microdomains away from the septum, and cardiolipin is predicted to be a major component of these APL microdomains. Efs harbors two putative cls genes, cls1 and cls2. While changes in Cls1 have been implicated in DAP-R, the exact roles of each enzyme in resistance are unknown. We aim to characterize the contributions of Cls1 and Cls2 in the development of DAP-R. Methods cls1 and cls2 were deleted individually and in tandem from DAP-S Efs OG117 and DAP-R Efs OG117∆liaX (a DAP-R derivative strain with an activated LiaFSR response). Mutants were characterized by DAP minimum inhibitory concentration (MIC) using E-test on Mueller-Hinton II agar and localization of APL microdomains with 10-N-nonyl-acridine orange staining. Quantitative PCR (qRT-PCR) was used to study gene expression profiles of cls1 and cls2 in Efs OG117∆liaX relative to Efs OG117 across the cell growth cycle. Results qRT-PCR revealed differential expression profiles of cls1 and cls2 associated with DAP-R. cls1 was highly upregulated in stationary phase concurrent with a decrease in cls2 expression. However, independent deletion of cls1 or cls2 in the DAP-R background resulted in no significant changes in DAP MICs or localization of APL microdomains (remaining non-septal). Further studies revealed that cls2 expression is upregulated upon deletion of cls1 in both the DAP-S and DAP-R background, suggesting a potential compensatory role for Cls2. Double deletion of both cls genes in the DAP-R strain decreased DAP MIC and restored the septal localization of APL microdomains. Conclusion Cls1 is the major and predominant enzyme involved in cell membrane adaptation associated with the development of DAP-R in E. faecalis. However, we describe a novel compensatory and overlapping role for cardiolipin synthases to ensure bacterial survival upon attack from antimicrobial peptides and related antibiotics. Disclosures Cesar A. Arias, MD, MSc, PhD, FIDSA, Entasis Therapeutics (Scientific Research Study Investigator)MeMed (Scientific Research Study Investigator)Merck (Grant/Research Support)


Sign in / Sign up

Export Citation Format

Share Document