scholarly journals Wavelength Plasmonic Demultiplexer Based on Square-disk Resonators in MIM Waveguide

Author(s):  
arman amiri faghani ◽  
Elaheh Yaghoubi ◽  
Elnaz Yaghoubi

Abstract A palsmonic demultiplexer based on cascading square nanodisk resonators in a metal-insulator-metal (MIM) plasmonic waveguide is proposed in this paper. The basic structure of the proposed demultiplexer is a plasmonic filter which consists of two waveguides, a middle cavity and two square nanodisk resonators. According to the simulation results the transmission spectra Full Width at Half-Maximum (FWHM) in the proposed structure reaches about 10 nm.With appropriate choice of refractive index (RI) and geometrical parameters the proposed structure can be adjusted and modified. The prposed structure has low FWHM, high sensitivity and acceptable figure of marit (FoM). By putting three filters with the same dimensions together, a triple-channel demultiplexer with three different wavelengths in each of the channels is designed. The effect of cross talk in the designed demultiplexer is less than -25 dB. The proposed structure can be used in the large-scale photonic integration, ultra-compact demultiplexer devices, nanosensors, integrated plasmonic devices and the development of optical integrated circuits. These structures numerically studied using Finite- Different Time- Domain (FDTD) simulations.

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 791 ◽  
Author(s):  
Mengmeng Wang ◽  
Meng Zhang ◽  
Yifei Wang ◽  
Ruijuan Zhao ◽  
Shubin Yan

Herein, the design for a tunable plasmonic refractive index nanosensor is presented. The sensor is composed of a metal–insulator–metal waveguide with a baffle and a circular split-ring resonator cavity. Analysis of transmission characteristics of the sensor structures was performed using the finite element method, and the influence of the structure parameters on the sensing characteristics of the sensor is studied in detail. The calculation results show that the structure can realize dual Fano resonance, and the structural parameters of the sensor have different effects on Fano resonance. The peak position and the line shape of the resonance can be adjusted by altering the sensitive parameters. The maximum value of structural sensitivity was found to be 1114.3 nm/RIU, with a figure of merit of 55.71. The results indicate that the proposed structure can be applied to optical integrated circuits, particularly in high sensitivity nanosensors.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1359
Author(s):  
Yaxin Yu ◽  
Jiangong Cui ◽  
Guochang Liu ◽  
Rongyu Zhao ◽  
Min Zhu ◽  
...  

To reduce the loss of the metal–insulator–metal waveguide structure in the near-infrared region, a plasmonic nanosensor structure based on a racetrack resonant cavity is proposed herein. Through finite element simulation, the transmission spectra of the sensor under different size parameters were analyzed, and its influence on the sensing characteristics of the system was examined. The analysis results show that the structure can excite the double Fano resonance, which has a distinctive dependence on the size parameters of the sensor. The position and line shape of the resonance peak can be adjusted by changing the key parameters. In addition, the sensor has a higher sensitivity, which can reach 1503.7 nm/RIU when being used in refractive index sensing; the figure of merit is 26.8, and it can reach 0.75 nm/°C when it is used in temperature sensing. This structure can be used in optical integrated circuits, especially high-sensitivity nanosensors.


2020 ◽  
Vol 10 (15) ◽  
pp. 5096
Author(s):  
Hao Su ◽  
Shubin Yan ◽  
Xiaoyu Yang ◽  
Jing Guo ◽  
Jinxi Wang ◽  
...  

In this article, a novel refractive index sensor composed of a metal–insulator–metal (MIM) waveguide with two rectangular stubs coupled with an elliptical ring resonator is proposed, the geometric parameters of which are controlled at a few hundreds of nanometer size. The transmission feature of the structure was studied by the finite element method based on electronic design automation (EDA) software COMSOL Multiphysics 5.4 (Stockholm, Sweden). The rectangular stub resonator can be thought of as a Fabry–Perot (FP) cavity, which can facilitate the Fano resonance. The simulation results reveal that the structure has a symmetric Lorentzian resonance, as well as an ultrasharp and asymmetrical Fano resonance. By adjusting the geometrical parameters, the sensitivity and figure of merit (FOM) of the structure can be optimized flexibly. After adjustments and optimization, the maximum sensitivity can reach up to 1550 nm/RIU (nanometer/Refractive Index Unit) and its FOM is 43.05. This structure presented in this article also has a promising application in highly integrated medical optical sensors to detect the concentration of hemoglobin and monitor body health.


2016 ◽  
Vol 16 (4) ◽  
pp. 3547-3556 ◽  
Author(s):  
Errui Yang ◽  
Guangshe Li ◽  
Yunlong Zheng ◽  
Liping Li

Selective synthesis of specific phased nanomaterials via a green route is a promising yet challenging task. In the present work, the hexagonal and monoclinic phases of BiPO4:Ln3+ (Ln = Sm, Eu, Tb, Dy) were prepared via room temperature co-precipitation method. For adjusting the phase of the products, the prepared mediums selected were the most common solvents, i.e., water and ethanol. It was very important that the prepared mediums could be easily recycled and reused by evaporating the filtrate. The formation mechanisms of hexagonal in water and monoclinic in ethanol were investigated. Interestingly, the growth behaviors of these phases were quite distinct and thus gave rise to distinct morphology and particle size. The hexagonal phase possesses a rod-like morphology with diameters of 50–160 nm and lengths of 65–400 nm while the monoclinic phase consists of almost entirely irregular nanoparticles. Also, it was found that the bending and stretching vibrations of O–H and PO4 tetrahedra were quite different for the products prepared in water and ethanol. Moreover, it was found that the luminescence properties, including emission intensity, lifetime, quantum efficiency, and color, could be readily tailored through controlling the phase structures and microstructures. The results showed that the monoclinic phase exhibited superior luminescent performance to the hexagonal phase. The methodologies reported in this work were fundamentally important, which could be easily extended to large-scale synthesis of other phased nanomaterials for potential applications as electroluminescent devices, optical integrated circuits, or biomarkers.


Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 125
Author(s):  
Shubin Yan ◽  
Haoran Shi ◽  
Xiaoyu Yang ◽  
Jing Guo ◽  
Wenchang Wu ◽  
...  

Due to their compact size and high sensitivity, plasmonic sensors have become a hot topic in the sensing field. A nanosensor structure, comprising the metal–insulator–metal (MIM) waveguide with a stub and a horizontal B-Type cavity, is designed as a refractive index sensor. The spectral characteristics of proposed structure are analyzed via the finite element method (FEM). The results show that there is a sharp Fano resonance profile, which is excited by a coupling between the MIM waveguide and the horizontal B-Type cavity. The normalized HZ field is affected by the difference value between the outer radii R1 and R2 of the semi-circle of the horizontal B-Type cavity greatly. The influence of every element of the whole system on sensing properties is discussed in depth. The sensitivity of the proposed structure can obtain 1548 nm/RIU (refractive index unit) with a figure of merit of 59. The proposed structure has potential in nanophotonic sensing applications.


2021 ◽  
Vol 11 (22) ◽  
pp. 10629
Author(s):  
Pengwei Liu ◽  
Shubin Yan ◽  
Yifeng Ren ◽  
Xiaoyu Zhang ◽  
Tingsong Li ◽  
...  

A plasmonic refractive index nanosensor structure consisting of a metal-insulator-metal (MIM) waveguide with two symmetrical rectangle baffles coupled with a connected-concentric-double rings resonator (CCDRR) is presented. In this study, its transmission characteristics were investigated using the finite element method (FEM). The consequences, studied via simulation, revealed that the transmission spectrum of the system presents a sharp asymmetric Fano profile due to the destructive interference between the wide-band mode of two rectangle baffles on the bus waveguide and the narrow-band mode of the CCDRR. The effects of the geometric parameters of the structure on the transmission characteristics were investigated comprehensively. A sensitivity of 2260 nm/RIU and figure of merit (FOM) of 56.5 were the best levels of performance that the designed structure could achieve. In addition, the system could act as a sensor for use for temperature sensing, with a sensitivity that could reach 1.48 nm/°C. The designed structure advances with technology with new detection positions and has good application prospects in other high-sensitivity nanosensor fields, for example, acting as a biosensor to detect the hemoglobin level in the blood.


Author(s):  
David Kielpinski ◽  
Ranojoy Bose ◽  
Jason Pelc ◽  
Thomas Van Vaerenbergh ◽  
Gabriel Mendoza ◽  
...  

2021 ◽  
Author(s):  
Ji Pan ◽  
Shi Qianhan ◽  
Zheng Ling ◽  
Wang guanghui ◽  
chen fang

Abstract A super high sensitivity plasmonic temperature sensor via a metal-insulator-metal (MIM) waveguide system is presented in this paper, the waveguide structure is composed of a square ring shape resonator with nanorods defects and a nanodisk resonator. Finite difference-time domain method (FDTD) is used to study the structure’s transmission characteristics and electromagnetic field distributions. Results show that sensitivity will be increased due to the gap plasmonic in the nanorod defect, the nanodisk resonator provides more plasmonic resonant modes for sensing. The positions and intensities of plasmonic resonant modes can be tuned by the radius of nanorod defects and coupling distance. The calculated maximum refractive index and FOM are and 3500, respectively. Compared to the structure without nanorods, the sensitivity is enhanced 33% for mode 1. For temperature sensing, the proposed structure possesses a relatively high sensitivity of about . The proposed plasmonic structure provides a basis for designing high sensitivity nano-biosensing, refractive index sensing.


2017 ◽  
Vol 31 (10) ◽  
pp. 1750101 ◽  
Author(s):  
Shaofang Pang ◽  
Yiping Huo ◽  
Limei Hao ◽  
Kaigang Sun ◽  
Yang-Junjie Wang ◽  
...  

We propose a novel metal–insulator–metal (MIM) waveguide structure consisting of a stub and a double side-coupled nanodisk. Its electromagnetically-induced transparency (EIT)-like response and transmission properties are numerically investigated by the finite element method (FEM). Numerical simulation results show that the EIT-like phenomenon appears in the transmission spectra. The transparency window can not only be manipulated by changing the radius of the nanodisk and the height of the stub, but also appear redshifted with the increasing of the refractive index n. Furthermore, the MIM waveguide structure is easy to yield a high sensitivity of 1200 nm/RIU with a figure of merit about [Formula: see text], which may be applied to nanosensors. These results would help us design the high-performance plasmonic devices based on the EIT-like response.


Sign in / Sign up

Export Citation Format

Share Document