scholarly journals Intracellular Hedgehog signaling controls Th17 polarization and pathogenicity

Author(s):  
Maike de la Roche ◽  
Joachim Hanna ◽  
Louise O'Brien ◽  
Chrysa Kapeni ◽  
Hung-Chang Chen ◽  
...  

Abstract T helper 17 (Th17) cells play a key role in barrier protection against fungal and bacterial pathogens but are also pathological drivers of many inflammatory diseases. Although the transcription factor networks governing Th17 differentiation are well defined, the signaling pathways that regulate the development and function of this important CD4+ T cell subset are still poorly understood. Hedgehog (Hh) signaling plays important roles in regulating cell fate decisions during embryogenesis and adult tissue patterning. Using novel CD4-specific Hh knockout mice, we find that intracellular Hh signaling, independently of exogenous Hh ligands, selectively drives Th17 lineage differentiation but not the development of Th1, Th2, or iTreg CD4+ Th cells. We show that the endogenous Indian Hh (Ihh) ligand signals via the signal transducer Smoothened to activate both canonical and non-canonical Hh pathways, through the Gli3 transcription factor and AMPK phosphorylation, respectively. Using two models of intestinal inflammation, we demonstrate that inhibition of the Hh pathway with either the clinically approved small molecule inhibitor vismodegib or genetic ablation of Ihh in CD4+ T cells greatly diminishes disease severity. Taken together, we have uncovered Hh as a novel signaling pathway controlling Th17 differentiation and Gli3 as a crucial transcription factor in this process. Our work paves the way for a potential use of Hh inhibitors in the treatment of inflammatory bowel disease and other autoimmune diseases.

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3100
Author(s):  
Jürgen Fritsch ◽  
Julia Frankenheim ◽  
Lothar Marischen ◽  
Timea Vadasz ◽  
Anja Troeger ◽  
...  

Signaling via death receptor family members such as TNF-R1 mediates pleiotropic biological outcomes ranging from inflammation and proliferation to cell death. Pro-survival signaling is mediated via TNF-R1 complex I at the cellular plasma membrane. Cell death induction requires complex IIa/b or necrosome formation, which occurs in the cytoplasm. In many cell types, full apoptotic or necroptotic cell death induction requires the internalization of TNF-R1 and receptosome formation to properly relay the signal inside the cell. We interrogated the role of the enzyme A disintegrin and metalloprotease 17 (ADAM17)/TACE (TNF-α converting enzyme) in death receptor signaling in human hematopoietic cells, using pharmacological inhibition and genetic ablation. We show that in U937 and Jurkat cells the absence of ADAM17 does not abrogate, but rather increases TNF mediated cell death. Likewise, cell death triggered via DR3 is enhanced in U937 cells lacking ADAM17. We identified ADAM17 as the key molecule that fine-tunes death receptor signaling. A better understanding of cell fate decisions made via the receptors of the TNF-R1 superfamily may enable us, in the future, to more efficiently treat infectious and inflammatory diseases or cancer.


2019 ◽  
Vol 31 (8) ◽  
pp. 499-514 ◽  
Author(s):  
Mingming Zhang ◽  
Lixing Zhou ◽  
Yuming Wang ◽  
Robert Gregory Dorfman ◽  
Dehua Tang ◽  
...  

Abstract Decreased levels of Faecalibacterium prausnitzii (F. prausnitzii), whose supernatant plays an anti-inflammatory effect, are frequently found in inflammatory bowel disease (IBD) patients. However, the anti-inflammatory products in F. prausnitzii supernatant and the mechanism have not been fully investigated. Here we found that F. prausnitzii and F. prausnitzii-derived butyrate were decreased in the intestines of IBD patients. Supplementation with F. prausnitzii supernatant and butyrate could ameliorate colitis in an animal model. Butyrate, but not other substances produced by F. prausnitzii, exerted an anti-inflammatory effect by inhibiting the differentiation of T helper 17 (Th17) cells. The mechanism underlying the anti-inflammatory effects of the butyrate produced by F. prausnitzii involved the enhancement of the acetylation-promoted degradation of c-Myc through histone deacetylase 3 (HDAC3) inhibition. In conclusion, F. prausnitzii produced butyrate to decrease Th17 differentiation and attenuate colitis through inhibiting HDAC3 and c-Myc-related metabolism in T cells. The use of F. prausnitzii may be an effective new approach to decrease the level of Th17 cells in the treatment of inflammatory diseases.


PPAR Research ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zhou Zhou ◽  
Weiliang Sun ◽  
Ying Liang ◽  
Yanxiang Gao ◽  
Wei Kong ◽  
...  

Uncontrolled activity of T cells mediates autoimmune and inflammatory diseases such as multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and atherosclerosis. Recent findings suggest that enhanced activity of interleukin-17 (IL-17) producing T helper 17 cells (Th17 cells) plays an important role in autoimmune diseases and inflammatory diseases. Previous papers have revealed that a lipid-lowering synthetic ligand of peroxisome proliferator-activated receptorα(PPARα), fenofibrate, alleviates both atherosclerosis and a few nonlipid-associated autoimmune diseases such as autoimmune colitis and multiple sclerosis. However, the link between fenofibrate and Th17 cells is lacking. In the present study, we hypothesized that fenofibrate inhibited the differentiation of Th17 cells. Our results showed that fenofibrate inhibited transforming growth factor-β(TGF-β) and IL-6-induced differentiation of Th17 cellsin vitro. However, other PPARαligands such as WY14643, GW7647 and bezafibrate did not show any effect on Th17 differentiation, indicating that this effect of fenofibrate might be PPARαindependent. Furthermore, our data showed that fenofibrate reduced IL-21 production and STAT3 activation, a critical signal in the Th17 differentiation. Thus, by ameliorating the differentiation of Th17 cells, fenofibrate might be beneficial for autoimmunity and inflammatory diseases.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Elliot A Perens ◽  
Zayra V Garavito-Aguilar ◽  
Gina P Guio-Vega ◽  
Karen T Peña ◽  
Yocheved L Schindler ◽  
...  

Proper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidney by restricting IM dimensions. The IM is expanded in zebrafish hand2 mutants and is diminished when hand2 is overexpressed. Within the posterior mesoderm, hand2 is expressed laterally adjacent to the IM. Venous progenitors arise between these two territories, and hand2 promotes venous development while inhibiting IM formation at this interface. Furthermore, hand2 and the co-expressed zinc-finger transcription factor osr1 have functionally antagonistic influences on kidney development. Together, our data suggest that hand2 functions in opposition to osr1 to balance the formation of kidney and vein progenitors by regulating cell fate decisions at the lateral boundary of the IM.


2016 ◽  
Author(s):  
Elliot A. Perens ◽  
Zayra V. Garavito-Aguilar ◽  
Gina P. Guio-Vega ◽  
Karen T. Peña ◽  
Yocheved L. Schindler ◽  
...  

AbstractProper organogenesis depends upon defining the precise dimensions of organ progenitor territories. Kidney progenitors originate within the intermediate mesoderm (IM), but the pathways that set the boundaries of the IM are poorly understood. Here, we show that the bHLH transcription factor Hand2 limits the size of the embryonic kidneyby restricting IM dimensions. The IM is expanded in zebrafish hand2 mutants and is diminished when hand2 is overexpressed. Within the posterior mesoderm, hand2 is expressed laterally adjacent to the IM. Venous progenitors arise between these two territories, and hand2 promotes venous development while inhibiting IM formation at this interface. Furthermore, hand2 and the co-expressed zinc-finger transcription factor osr1 have functionally antagonistic influences on kidney development. Together, our data suggest that hand2 functions in opposition to osr1 to balance the formation of kidney and vein progenitors by regulating cell fate decisions at the lateral boundary of the IM.IMPACT STATEMENTThe Hand2 transcription factor regulates the dimensions of the kidney by controlling cell fate decisions at the interface between organ fields.


Blood ◽  
2007 ◽  
Vol 109 (9) ◽  
pp. 3757-3766 ◽  
Author(s):  
Nicola J. Rowbotham ◽  
Ariadne L. Hager-Theodorides ◽  
Marek Cebecauer ◽  
Divya K. Shah ◽  
Ekati Drakopoulou ◽  
...  

Abstract TCR signal strength is involved in many cell fate decisions in the T-cell lineage. Here, we show that transcriptional events induced by Hedgehog (Hh) signaling reduced TCR signal strength in mice. Activation of Hh signaling in thymocytes in vivo by expression of a transgenic transcriptional-activator form of Gli2 (Gli2\#916;N2) changed the outcome of TCR ligation at many stages of thymocyte development, allowing self-reactive cells to escape clonal deletion; reducing transgenic TCR-mediated positive selection; reducing the ratio of CD4/CD8 single-positive (SP) cells; and reducing cell surface CD5 expression. In contrast, in the Shh\#8722;/\#8722; thymus the ratio of CD4/CD8 cells and both positive and negative selection of a transgenic TCR were increased, demonstrating that Shh does indeed influence TCR repertoire selection and the transition from double-positive (DP) to SP cell in a physiological situation. In peripheral T cells, Gli2\#916;N2 expression attenuated T-cell activation and proliferation, by a mechanism upstream of ERK phosphorylation.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 676
Author(s):  
Matthew Man-Kin Wong ◽  
Sancy Mary Joyson ◽  
Heiko Hermeking ◽  
Sung Kay Chiu

Activating Enhancer-Binding Protein 4 (AP4)/transcription factor AP4 (TFAP4) is a basic-helix-loop-helix-leucine-zipper transcription factor that was first identified as a protein bound to SV40 promoters more than 30 years ago. Almost 15 years later, AP4 was characterized as a target of the c-Myc transcription factor, which is the product of a prototypic oncogene that is activated in the majority of tumors. Interestingly, AP4 seems to represent a central hub downstream of c-Myc and N-Myc that mediates some of their functions, such as proliferation and epithelial-mesenchymal transition (EMT). Elevated AP4 expression is associated with progression of cancer and poor patient prognosis in multiple tumor types. Deletion of AP4 in mice points to roles of AP4 in the control of stemness, tumor initiation and adaptive immunity. Interestingly, ex vivo AP4 inactivation results in increased DNA damage, senescence, and apoptosis, which may be caused by defective cell cycle progression. Here, we will summarize the roles of AP4 as a transcriptional repressor and activator of target genes and the contribution of protein and non-coding RNAs encoded by these genes, in regulating the above mentioned processes. In addition, proteins interacting with or regulating AP4 and the cellular signaling pathways altered after AP4 dysregulation in tumor cells will be discussed.


1999 ◽  
Vol 82 (1-2) ◽  
pp. 141-150 ◽  
Author(s):  
Rita Reifegerste ◽  
Jörg Schreiber ◽  
Sven Gülland ◽  
Anja Lüdemann ◽  
Michael Wegner

Sign in / Sign up

Export Citation Format

Share Document