scholarly journals Development of in vitro resistance to fluoroquinolones in Pseudomonas aeruginosa

2020 ◽  
Author(s):  
Lei Zhao ◽  
Shiqi Wang ◽  
Xiaobing Li ◽  
Xiaojing He ◽  
Lingyan Jian

Abstract Fluoroquinolone resistance in Pseudomonas aeruginosa typically arises through site-specific mutations and overexpression of efflux pumps. In this study, we investigated the dynamics of different resistance mechanisms in P. aeruginosa populations that have evolved under fluoroquinolone pressure, as well as the interactions between these mechanisms in evolutionary trajectories. Bacteria of strain ATCC27853 were selected under different concentrations of ciprofloxacin and levofloxacin for six parallel lineages, followed by amplification of four target genes in the quinolone-resistance determining region (QRDR) and Sanger sequencing to identify the mutations. The expression of four efflux pump proteins was evaluated by real-time polymerase chain reaction using the relative quantitation method, with the ATCC27853 strain used as a control. We found that ciprofloxacin killed P. aeruginosa sooner than did levofloxacin. Further, we identified five different mutations in three subunits of QRDRs, with gyrA as the main mutated gene associated with conferring fluoroquinolone resistance. Additionally, we found a larger number of mutations appearing at 2 mg/L and 4 mg/L of ciprofloxacin and levofloxacin, respectively. Moreover, we identified the main efflux pump being expressed as MexCD-OprJ, with initial overexpression observed at 0.25 mg/L and 0.5 mg/L of ciprofloxacin and levofloxacin, respectively. These results demonstrated gyrA83 mutation and MexCD-OprJ overexpression as the primary mechanism conferring ciprofloxacin and levofloxacin resistance in P. aeruginosa. In addition, we also show that ciprofloxacin exhibited a stronger ability to kill the bacteria while potentially rendering it more susceptible to resistance.

2020 ◽  
Author(s):  
Lei Zhao ◽  
Shiqi Wang ◽  
Xiaobing Li ◽  
Xiaojing He ◽  
Lingyan Jian

Abstract Background: The objectives of this study were to investigate the dynamics of different resistant mechanisms in P.aeruginosa populations that have evolved under fluoroquinolone pressure, and any interactions between these mechanisms in the evolutionary trajectories. Methods: In this study, bacteria of the strain ATCC27853 were selected under different concentrations of levofloxacin and ciprofloxacin for six parallel lineages. The four target genes in the quinolone-resistance determining region were amplified and then Sanger sequencing was used to find the mutations. The expression of four efflux pump proteins were evaluated by real-time PCR, using the relative quantitation method, and the ATCC27853 was selected as a control. Results: we found that the P.aeruginosa was killed by ciprofloxacin earlier than levofloxacin. We found five different mutations in three subunits of QRDRs in our study; gyrA was the main mutated gene for conferring resistance to fluoroquinolone. A greater number of mutations appeared at 4mg/L for levofloxacin and at 2mg/L for ciprofloxacin. The main efflux pump that was expressed was MexCD-OprJ, and the first over expressed was evident at 0.5mg/L for levofloxacin and 0.25mg/L for ciprofloxacin. Conclusions: The mutation of gyrA83 and overexpression of MexCD-OprJ were the main mechanisms that conferred resistance of P.aeruginosa to levofloxacin and ciprofloxacin. Ciprofloxacin had a stronger ability to kill the bacteria, while may render bacteria more susceptible to resistance.


ANKEM Dergisi ◽  
2021 ◽  
Author(s):  
Nilüfer Uzunbayır Akel ◽  
Yamaç Tekintaş ◽  
Fethiye Ferda Yılmaz ◽  
İsmail Öztürk ◽  
Mustafa Ökeer ◽  
...  

Pseudomonas aeruginosa is one of the most important causes of hospital infections. Although different antibiotic groups are used for the treatment of P.aeruginosa infections, quinolone groups are distinguished by the advantages of oral administration. However, in recent years, resistance against members of this group has made treatment more difficult. The aim of this study was to investigate the epidemiological relationship and possible mechanisms of resistance in ciprofloxacin resistant P. aeruginosa isolates from Ege University Hospital. The identification of P.aeruginosa bacteria isolated from clinical samples in Ege University Medical Faculty Medical Microbiology Laboratory was determined by VITEK MS automated systems by VITEK compact, antimicrobial susceptibility. The epidemiological relationships of the ciprofloxacin resistant isolates were determined by Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The presence of qnrA, qnrB, qnrS, qepA genes, the quinolone resistance genes and nfxB, mexR, the regulatory genes of the efflux pump, was determined by PCR. The phenylalanine-arginine β-naphthylamide (PAβN) assay was used to determine the activation of the efflux pump. Twenty-two isolates (26.5 %) were found resistant to ciprofloxacin. According to the ERIC-PCR results, 11 unrelated clones were detected. Ciprofloxacin minimum inhibitory concentration (MIC) values were decreased 2-64 times in 10 isolates in the presence of PAIN. No ciprofloxacin MIC change was detected in one isolate. The presence of pump regulatory genes was determined in 10 of the 11 representative isolates, while only qnrB of the genes associated with quinolone resistance was detected in seven representative isolates. qnrA, qnrS, qepA genes were not detected in any isolate. Ciprofloxacin resistant P.aeruginosa isolates are isolated from our hospital. It is noteworthy that the isolates belonging to different genetic groups are in circulation in clinics. Basic resistance mechanisms are thought to be efflux pumps and qnrB genes.


2020 ◽  
Vol 75 (9) ◽  
pp. 2508-2515 ◽  
Author(s):  
María A Gomis-Font ◽  
Gabriel Cabot ◽  
Irina Sánchez-Diener ◽  
Pablo A Fraile-Ribot ◽  
Carlos Juan ◽  
...  

Abstract Objectives We analysed the dynamics and mechanisms of resistance development to imipenem alone or combined with relebactam in Pseudomonas aeruginosa WT (PAO1) and mutator (PAOMS; ΔmutS) strains. Methods PAO1 or PAOMS strains were incubated for 24 h in Mueller–Hinton Broth with 0.125–64 mg/L of imipenem ± relebactam 4 mg/L. Tubes from the highest antibiotic concentration showing growth were reinoculated in fresh medium containing concentrations up to 64 mg/L of imipenem ± relebactam for 7 days. Two colonies per strain, replicate experiment and antibiotic from early (Day 1) and late (Day 7) cultures were characterized by determining the susceptibility profiles, WGS and determination of the expression of ampC and efflux-pump-coding genes. Virulence was studied in a Caenorhabditis elegans infection model. Results Relebactam reduced imipenem resistance development for both strains, although resistance emerged much faster for PAOMS. WGS indicated that imipenem resistance was associated with mutations in the porin OprD and regulators of ampC, while the mutations in imipenem/relebactam-resistant mutants were located in oprD and regulatoras of MexAB-OprM. High-level imipenem/relebactam resistance was only documented in the PAOMS strain and was associated with an additional specific (T680A) mutation located in the catalytic pocket of ponA (PBP1a) and with reduced virulence in the C. elegans model. Conclusions Imipenem/relebactam could be a useful alternative for the treatment of MDR P. aeruginosa infections, potentially reducing resistance development during treatment. Moreover, this work deciphers the potential resistance mechanisms that may emerge upon the introduction of this novel combination into clinical practice.


1997 ◽  
Vol 41 (11) ◽  
pp. 2540-2543 ◽  
Author(s):  
T Köhler ◽  
M Michea-Hamzehpour ◽  
P Plesiat ◽  
A L Kahr ◽  
J C Pechere

Resistance mechanisms selected after in vitro exposure to 12 quinolones were analyzed for Pseudomonas aeruginosa. Efflux-type mutants were predominant. Quinolones differed in their ability to select a particular efflux system. While the newer fluoroquinolones favored the MexCD-OprJ system, the older quinolones selected exclusively the MexEF-OprN or MexAB-OprM systems. A protonable C-7 substituent in combination with a C-6 fluorine atom is a structural determinant of quinolones involved in efflux pump substrate specificity.


2019 ◽  
Vol 63 (9) ◽  
Author(s):  
Vidmantas Petraitis ◽  
Ruta Petraitiene ◽  
Ethan Naing ◽  
Thein Aung ◽  
Wai Phyo Thi ◽  
...  

ABSTRACT Ceftolozane-tazobactam (C/T) is a novel cephalosporin with in vitro activity against Pseudomonas aeruginosa that is resistant to extended-spectrum penicillins and antipseudomonal cephalosporins. In order to assess the antimicrobial effect of C/T in treatment of Pseudomonas pneumonia, we investigated the pharmacokinetics and efficacy of C/T in persistently neutropenic rabbits. Pseudomonas pneumonia was established by direct endotracheal inoculation. Treatment groups consisted of C/T, ceftazidime (CAZ), piperacillin-tazobactam (TZP), and untreated controls (UC). Rabbits received a dosage of C/T of 80 mg/kg every 4 h (q4h) intravenously (i.v.) (53 mg/kg ceftolozane/26 mg/kg tazobactam) to match the free drug time above the MIC as well as a comparable plasma area under the concentration-time curve (AUC) (humanized doses of ceftolozane-tazobactam of 3 g [2 g/1 g]) q8h, due to the more rapid elimination of ceftolozane in rabbits (0.75 h) than in humans (2.5 h). Four molecularly characterized clinical P. aeruginosa isolates from patients with pneumonia were studied, including one isolate from each classification group: pan-susceptible (PS), outer membrane porin D (OPRD) porin loss (OPRDPL), efflux pump expression (EPE), and AmpC hyperexpression (ACHE). Treatment was continued for 12 days. Treatment with ceftolozane-tazobactam resulted in a ≥105 reduction in residual pulmonary and bronchoalveolar lavage (BAL) fluid bacterial burdens caused by all 4 strains (P ≤ 0.01). This antibacterial activity coincided with reduction of lung weight (an organism-mediated pulmonary injury marker) (P < 0.05). CAZ was less active in ACHE-infected rabbits, and TZP had less activity against EPE, ACHE, and OPRDPL strains. Survival was prolonged in the C/T and CAZ treatment groups in comparison to the TZP and UC groups (P < 0.001). Ceftolozane-tazobactam is highly active in treatment of experimental P. aeruginosa pneumonia in persistently neutropenic rabbits, including infections caused by strains with the most common resistance mechanisms.


2009 ◽  
Vol 54 (3) ◽  
pp. 1218-1225 ◽  
Author(s):  
Anna Fàbrega ◽  
Robert G. Martin ◽  
Judah L. Rosner ◽  
M. Mar Tavio ◽  
Jordi Vila

ABSTRACT Elevated levels of fluoroquinolone resistance are frequently found among Escherichia coli clinical isolates. This study investigated the antibiotic resistance mechanisms of strain NorE5, derived in vitro by exposing an E. coli clinical isolate, PS5, to two selection steps with increasing concentrations of norfloxacin. In addition to the amino acid substitution in GyrA (S83L) present in PS5, NorE5 has an amino acid change in ParC (S80R). Furthermore, we now find by Western blotting that NorE5 has a multidrug resistance phenotype resulting from the overexpression of the antibiotic resistance efflux pump AcrAB-TolC. Microarray and gene fusion analyses revealed significantly increased expression in NorE5 of soxS, a transcriptional activator of acrAB and tolC. The high soxS activity is attributable to a frameshift mutation that truncates SoxR, rendering it a constitutive transcriptional activator of soxS. Furthermore, microarray and reverse transcription-PCR analyses showed that mdtG (yceE), encoding a putative efflux pump, is overexpressed in the resistant strain. SoxS, MarA, and Rob activated an mdtG::lacZ fusion, and SoxS was shown to bind to the mdtG promoter, showing that mdtG is a member of the marA-soxS-rob regulon. The mdtG marbox sequence is in the backward or class I orientation within the promoter, and its disruption resulted in a loss of inducibility by MarA, SoxS, and Rob. Thus, chromosomal mutations in parC and soxR are responsible for the increased antibiotic resistance of NorE5.


2015 ◽  
Vol 59 (6) ◽  
pp. 3059-3065 ◽  
Author(s):  
C. Pitart ◽  
F. Marco ◽  
T. A. Keating ◽  
W. W. Nichols ◽  
J. Vila

ABSTRACTCeftazidime-avibactam and comparator antibiotics were tested by the broth microdilution method against 200Enterobacteriaceaeand 25Pseudomonas aeruginosastrains resistant to fluoroquinolones (including strains with the extended-spectrum β-lactamase [ESBL] phenotype and ceftazidime-resistant strains) collected from our institution. The MICs and mechanisms of resistance to fluoroquinolone were also studied. Ninety-nine percent of fluoroquinolone-resistantEnterobacteriaceaestrains were inhibited at a ceftazidime-avibactam MIC of ≤4 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference). Ceftazidime-avibactam was very active against ESBLEscherichia coli(MIC90of 0.25 mg/liter), ESBLKlebsiella pneumoniae(MIC90of 0.5 mg/liter), ceftazidime-resistant AmpC-producing species (MIC90of 1 mg/liter), non-ESBLE. coli(MIC90of ≤0.125 mg/liter), non-ESBLK. pneumoniae(MIC90of 0.25 mg/liter), and ceftazidime-nonresistant AmpC-producing species (MIC90of ≤0.5 mg/liter). Ninety-six percent of fluoroquinolone-resistantP. aeruginosastrains were inhibited at a ceftazidime-avibactam MIC of ≤8 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference), with a MIC90of 8 mg/liter. Additionally, fluoroquinolone-resistant mutants from each species tested were obtainedin vitrofrom two strains, one susceptible to ceftazidime and the other a β-lactamase producer with a high MIC against ceftazidime but susceptible to ceftazidime-avibactam. Thereby, the impact of fluoroquinolone resistance on the activity of ceftazidime-avibactam could be assessed. The MIC90values of ceftazidime-avibactam for the fluoroquinolone-resistant mutant strains ofEnterobacteriaceaeandP. aeruginosawere ≤4 mg/liter and ≤8 mg/liter, respectively. We conclude that the presence of fluoroquinolone resistance does not affectEnterobacteriaceaeandP. aeruginosasusceptibility to ceftazidime-avibactam; that is, there is no cross-resistance.


2007 ◽  
Vol 51 (11) ◽  
pp. 4062-4070 ◽  
Author(s):  
B. Henrichfreise ◽  
I. Wiegand ◽  
W. Pfister ◽  
B. Wiedemann

ABSTRACT In this study, we analyzed the mechanisms of multiresistance for 22 clinical multiresistant and clonally different Pseudomonas aeruginosa strains from Germany. Twelve and 10 strains originated from cystic fibrosis (CF) and non-CF patients, respectively. Overproduction of the efflux systems MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM was studied. Furthermore, loss of OprD, alterations in type II topoisomerases, AmpC overproduction, and the presence of 25 acquired resistance determinants were investigated. The presence of a hypermutation phenotype was also taken into account. Besides modifications in GyrA (91%), the most frequent mechanisms of resistance were MexXY-OprM overproduction (82%), OprD loss (82%), and AmpC overproduction (73%). Clear differences between strains from CF and non-CF patients were found: numerous genes coding for aminoglycoside-modifying enzymes and located, partially in combination with β-lactamase genes, in class 1 integrons were found only in strains from non-CF patients. Furthermore, multiple modifications in type II topoisomerases conferring high quinolone resistance levels and overexpression of MexAB-OprM were exclusively detected in multiresistant strains from non-CF patients. Correlations of the detected phenotypes and resistance mechanisms revealed a great impact of efflux pump overproduction on multiresistance in P. aeruginosa. Confirming previous studies, we found that additional, unknown chromosomally mediated resistance mechanisms remain to be determined. In our study, 11 out of 12 strains and 3 out of 10 strains from CF patients and non-CF patients, respectively, were hypermutable. This extremely high proportion of mutator strains should be taken into consideration for the treatment of multiresistant P. aeruginosa.


2007 ◽  
Vol 51 (10) ◽  
pp. 3642-3649 ◽  
Author(s):  
Beate Henrichfreise ◽  
Irith Wiegand ◽  
Ingeborg Luhmer-Becker ◽  
Bernd Wiedemann

ABSTRACT In this study we investigated the interplay of antibiotic pharmacokinetic profiles and the development of mutation-mediated resistance in wild-type and hypermutable Pseudomonas aeruginosa strains. We used in vitro models simulating profiles of the commonly used therapeutic drugs meropenem and ceftazidime, two agents with high levels of antipseudomonal activity said to have different potentials for stimulating resistance development. During ceftazidime treatment of the wild-type strain (PAO1), fully resistant mutants overproducing AmpC were selected rapidly and they completely replaced wild-type cells in the population. During treatment with meropenem, mutants of PAO1 were not selected as rapidly and showed only intermediate resistance due to the loss of OprD. These mutants also replaced the parent strain in the population. During the treatment of the mutator P. aeruginosa strain with meropenem, the slowly selected mutants did not accumulate several resistance mechanisms but only lost OprD and did not completely replace the parent strain in the population. Our results indicate that the commonly used dosing regimens for meropenem and ceftazidime cannot avoid the selection of mutants of wild-type and hypermutable P. aeruginosa strains. For the treatment outcome, including the prevention of resistance development, it would be beneficial for the antibiotic concentration to remain above the mutant prevention concentration for a longer period of time than it does in present regimens.


1999 ◽  
Vol 43 (12) ◽  
pp. 2877-2880 ◽  
Author(s):  
Ribhi M. Shawar ◽  
David L. MacLeod ◽  
Richard L. Garber ◽  
Jane L. Burns ◽  
Jenny R. Stapp ◽  
...  

ABSTRACT The in vitro activity of tobramycin was compared with those of six other antimicrobial agents against 1,240 Pseudomonas aeruginosa isolates collected from 508 patients with cystic fibrosis during pretreatment visits as part of the phase III clinical trials of tobramycin solution for inhalation. The tobramycin MIC at which 50% of isolates are inhibited (MIC50) and MIC90 were 1 and 8 μg/ml, respectively. Tobramycin was the most active drug tested and also showed good activity against isolates resistant to multiple antibiotics. The isolates were less frequently resistant to tobramycin (5.4%) than to ceftazidime (11.1%), aztreonam (11.9%), amikacin (13.1%), ticarcillin (16.7%), gentamicin (19.3%), or ciprofloxacin (20.7%). For all antibiotics tested, nonmucoid isolates were more resistant than mucoid isolates. Of 56 isolates for which the tobramycin MIC was ≥16 μg/ml and that were investigated for resistance mechanisms, only 7 (12.5%) were shown to possess known aminoglycoside-modifying enzymes; the remaining were presumably resistant by an incompletely understood mechanism often referred to as “impermeability.”


Sign in / Sign up

Export Citation Format

Share Document