scholarly journals Effect of 6 MeV electron Irradiation on Nano-Cu 2 ZnSnS 4

Author(s):  
Sneha Pravin Kandare ◽  
V. N. Bhoraskar ◽  
A. B . Phatangare ◽  
Rekha Rao ◽  
Mala Rao ◽  
...  

Abstract Microwave synthesized nano sized Cu2ZnSnS4 (CZTS) powder was irradiated with 6 MeV electrons, to investigate stability under radiation. The structural, optical, vibrational and morphological properties were explored using X-ray diffraction, UV-Visible spectroscopy, Raman spectroscopy and Scanning Electron Microscope (SEM).The irradiated sample shows significant change in properties when compared to the pristine sample. X ray peak broadening analysis has been used to estimate the crystallite size and lattice strain. Raman spectroscopy analysis confirms the transition of ordered kesterite to disordered kesterite phase after electron irradiation at electron fluence of 4 x1015 e-/cm2. CZTS nano-particles having hierarchical flower like morphology starts agglomerating after electron irradiation as observed from SEM images. The sample did not amorphize upto the highest fluence 4 x 1015 e-/cm2 employed in this study.

2018 ◽  
Vol 7 (3) ◽  
pp. 255-259 ◽  
Author(s):  
Ehasn Rahmani ◽  
Mohammad Rahmani

Abstract The ZnO:xCu photocatalyst was prepared with reacting media, namely, water method followed by wet impregnation to deposit Cu on the ZnO nano particles. X-ray diffraction was used to perform crystallography and the determination of the ZnO:xCu particle size. Fourier transform infrared was employed for the detection of chemical bonds in the synthesized photocatalyst. The nanoparticle morphology was studied by field emission scanning electron microscope. The elemental composition of the synthesized catalysts was evaluated with X-ray fluorescence technique. Diffuse reflection spectroscopy analysis was performed to investigate the light absorption of the ZnO:xCu catalysts. The photocatalytic activity of the prepared ZnO:xCu nanoparticles was studied for the removal of nitrate from the aqueous solution of ammonium nitrate (50 mg·l−1) under UV irradiation. Results indicated that the ZnO:xCu photocatalyst has high photocalytic activity to remove nitrate from water. Moreover, complete degradation was achieved after 2.5 h.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3832 ◽  
Author(s):  
Saeid Abbasi ◽  
Mohammad Hemen Jannaty ◽  
Rabar H. Faraj ◽  
Shahriar Shahbazpanahi ◽  
Amir Mosavi

Incorporating various industrial waste materials into concrete has recently gained attention for sustainable construction. This paper, for the first time, studies the effects of silica stone waste (SSW) powder on concrete. The cement of concrete was replaced with 5, 10, 15, and 20% of the SSW powder. The mechanical properties of concrete, such as compressive and tensile strength, were studied. Furthermore, the microstructure of concrete was studied by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy analysis (EDX), Fourier transformed infrared spectroscopy (FTIR), and X-Ray diffraction (XRD) tests. Compressive and tensile strength of samples with 5% SSW powder was improved up to 18.8% and 10.46%, respectively. As can be observed in the SEM images, a reduced number of pores and higher density in the matrix can explain the better compressive strength of samples with 5% SSW powder.


2016 ◽  
Vol 881 ◽  
pp. 491-496
Author(s):  
Nilson Santos Ferreira ◽  
A.C.B. de Oliveira ◽  
G.V.S. Mota ◽  
A.C. Cunha ◽  
Marcelo S. Silva

Fe-doped (Ce0.98Fe0.02O2−δ) cerium oxide nanoparticles were synthesized by a sol-gel-based method at 1000 °C during different calcination time (1.0, 1.5, 2.0, and 2.5h). The effect of calcination time on microstructure and structural properties of the Ce0.98Fe0.02O2−δ nanoparticles was studied by X-ray diffraction (XRD) and Raman spectroscopy measurements. Analysis of the XRD pattern shows that all samples exhibited a single-phase fluorite structurewith lattice parameters ranging from 0.540991 Å (1.0h) to0.540635 Å (2.5h). Raman spectroscopy also confirms that the Fe atoms successfully displaced some of the Ce atoms in the CeO2 lattice without forming any impure phases. XRD and Raman spectroscopy results showed that both crystallite size and the particle size increased as the calcination time increased from around 36 nm (1.0h) to 64 nm (2.5h).


2021 ◽  
Author(s):  
Linhu Ding ◽  
Xiaoshuai Han ◽  
Huiling Li ◽  
Jingquan Han ◽  
Lihua Cao ◽  
...  

Abstract The study on novel natural fibers in polymer-based composites will help promote the invention of novel reinforcement and expand their possible applications. Herein, novel cellulosic fibers were extracted from the stem of manau rattan (Calamus manan) by mechanical separation. It is the first time to comprehensively analyze and study the chemical, thermal, mechanical and morphological properties of manau rattan fibers by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction Analysis (XRD), Thermogravimetric Analysis (TGA), single fiber tensile test and Scanning Electron Microscopy (SEM). Component analysis results showed the cellulose, hemicellulose and lignin contents of manau rattan fibers were 42, 20, and 27%, respectively. The surface of the rattan fiber was hydrophilic according to the oxygen/carbon ratio of 0.49. Manau rattan has a high crystalline index of 48.28%, inducing a high maximum degradation temperature of 332.8°C. This reveals that it can be used as a reinforcement for thermoplastic composites whose operating temperature is below 300°C. The average tensile strength can reach 273.28 MPa, which is beneficial to improve the mechanical properties of rattan fiber reinforced composites. SEM images displayed the rough surface of the fiber, which helps to enhance the interfacial adhesion between the fibers and matrices in composites. This work was also in comparison with some other natural fibers. The above analysis and research showed the great potential of manau rattan fibers as the reinforcement in polymer-based composites.


2020 ◽  
Vol 10 (1) ◽  
pp. 1856-1861

This contribution reports first time synthesis of Cr2O3 nanostructures from chromium (III) chloride hexahydrate precursor using Vernonia amygdalina leaves extract as a reducing and stabilizing agent. Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy techniques were used to study the structural and morphological properties of the as-synthesized Cr2O3 nanostructures. Powder X-ray diffraction patterns spectral analysis showed that hexagonal Cr2O3 nanostructures with an average crystallite size of 23.4 nm were synthesized with the minor appearance of CrO2. SEM images showed that the synthesized nanomaterials are granules. Fourier-transform infrared spectra represent a sharp absorption band at 552 cm-1, which indicates Cr-O-Cr vibrational and stretching modes.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1121
Author(s):  
Iuliana Pasuk ◽  
Florentina Neațu ◽  
Ștefan Neațu ◽  
Mihaela Florea ◽  
Cosmin M. Istrate ◽  
...  

In this study, nano-BaTiO3 (BTO) powders were obtained via the solvothermal method at different reaction times and were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. The results were compared with those obtained for a larger crystallite size BTO powder (BTO-m). The sizes of the cuboid crystallites (as determined by XRD and TEM) ranged from about 18 to 24 nm, depending on the reaction time. The evolution with temperature of the structure parameters of nano-BTO was monitored by means of X-ray diffraction and Raman spectroscopy and no signs of phase transition were found up to 170 °C. Careful monitoring of the dependence of the XRD peak widths on the hkl indices showed that the effect of the cubic crystallite shape upon the XRD peak widths was buried by the effect of hidden tetragonal line splits and by anisotropic microstrain. The good correlation of the line widths with the tetragonal split amplitudes, observed especially for BTO-m above the transition temperature, indicates tetragonal deformations, as also revealed by Raman spectroscopy. The large anisotropic microstrain shown by the nano-powders, which had a maximum value in the <100> directions, was considered evidence of the phenomenon of surface relaxation of cubic crystallites edged by {100} faces. The observed behavior of the nano-BTO structures with increasing temperature may suggest a correlation between the surface relaxation and tetragonal deformation in the nano-cubes. The experimental results for both nano-BTO and mezoscale-BTO are in agreement with the core-shell model.


2005 ◽  
Vol 126 ◽  
pp. 101-105 ◽  
Author(s):  
B. Moulin ◽  
L. Hennet ◽  
D. Thiaudière ◽  
P. Melin ◽  
P. Simon

2011 ◽  
Vol 314-316 ◽  
pp. 273-278
Author(s):  
Yu Hua Dong ◽  
Ke Ren ◽  
Qiong Zhou

Linear low density polyethylene (LLDPE) was chemically modified with grafting maleic anhydride (MAH) monomer on its backbone by melting blending. Nano-particles SiO2 was modified by cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and anionic surfactant sulfosalicylic acid (SSA) and added to PE coating respectively. Measurement of membrane potential showed that the coating containing modified SiO2 nano-particles had characteristic of ion selectivity. The properties of the different coatings were investigated according to relative industrial standards. Experimental results indicated that PE coating with ion selectivity had better performances, such as adhesion strength, cathodic disbonding and anti-corrosion, than those of coating without ion selectivity. Crystal structure of the coatings before and after alkali corrosion was characterized by Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD). Structure of the coating without ion selectivity was damaged by NaOH alkali solution, causing mechanical properties being decreased. And the structure of the ion selective coatings was not affected.


Sign in / Sign up

Export Citation Format

Share Document