scholarly journals Characterization of novel natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites

Author(s):  
Linhu Ding ◽  
Xiaoshuai Han ◽  
Huiling Li ◽  
Jingquan Han ◽  
Lihua Cao ◽  
...  

Abstract The study on novel natural fibers in polymer-based composites will help promote the invention of novel reinforcement and expand their possible applications. Herein, novel cellulosic fibers were extracted from the stem of manau rattan (Calamus manan) by mechanical separation. It is the first time to comprehensively analyze and study the chemical, thermal, mechanical and morphological properties of manau rattan fibers by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction Analysis (XRD), Thermogravimetric Analysis (TGA), single fiber tensile test and Scanning Electron Microscopy (SEM). Component analysis results showed the cellulose, hemicellulose and lignin contents of manau rattan fibers were 42, 20, and 27%, respectively. The surface of the rattan fiber was hydrophilic according to the oxygen/carbon ratio of 0.49. Manau rattan has a high crystalline index of 48.28%, inducing a high maximum degradation temperature of 332.8°C. This reveals that it can be used as a reinforcement for thermoplastic composites whose operating temperature is below 300°C. The average tensile strength can reach 273.28 MPa, which is beneficial to improve the mechanical properties of rattan fiber reinforced composites. SEM images displayed the rough surface of the fiber, which helps to enhance the interfacial adhesion between the fibers and matrices in composites. This work was also in comparison with some other natural fibers. The above analysis and research showed the great potential of manau rattan fibers as the reinforcement in polymer-based composites.

Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 26
Author(s):  
Patrycja Wilczewska ◽  
Aleksandra Bielicka-Giełdoń ◽  
Agnieszka Fiszka Borzyszkowska ◽  
Aleksandra Pieczyńska ◽  
Ewa Maria Siedlecka

A series of Bi4O5Br2 photocatalysts were prepared via an innovation method of synthesis with ionic liquids (ILs). The crystal structures were investigated by X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The Field Emission Scanning Electron Microscope (FE-SEM) images illustrated the unique structure of prepared photocatalysts. The photocatalysts were also characterized by N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis/DRS) and photoluminescence spectra (PL). The role of ILs in synthesis of Bi4O5Br2 on morphology and photocatalytic properties were investigated. Rhodamine B, 5-fluorouracil and chromium (VI) were used as the model micropollutants to evaluated adsorption capacity, photooxidation and photoreduction ability of prepared Bi4O5Br2 under artificial solar light. This work provided a new thought for enhanced photocatalytic activity of bismuth oxybromide photocatalysts.


2021 ◽  
Author(s):  
Sneha Pravin Kandare ◽  
V. N. Bhoraskar ◽  
A. B . Phatangare ◽  
Rekha Rao ◽  
Mala Rao ◽  
...  

Abstract Microwave synthesized nano sized Cu2ZnSnS4 (CZTS) powder was irradiated with 6 MeV electrons, to investigate stability under radiation. The structural, optical, vibrational and morphological properties were explored using X-ray diffraction, UV-Visible spectroscopy, Raman spectroscopy and Scanning Electron Microscope (SEM).The irradiated sample shows significant change in properties when compared to the pristine sample. X ray peak broadening analysis has been used to estimate the crystallite size and lattice strain. Raman spectroscopy analysis confirms the transition of ordered kesterite to disordered kesterite phase after electron irradiation at electron fluence of 4 x1015 e-/cm2. CZTS nano-particles having hierarchical flower like morphology starts agglomerating after electron irradiation as observed from SEM images. The sample did not amorphize upto the highest fluence 4 x 1015 e-/cm2 employed in this study.


2012 ◽  
Vol 576 ◽  
pp. 212-215 ◽  
Author(s):  
R.M. Manshor ◽  
Hazleen Anuar ◽  
Wan Busu Wan Nazri ◽  
M.I. Ahmad Fitrie

Durian skin fibres (DSF) are cellulose-based fibres extracted from the durian peel. This paper present the physical behaviour, chemical structure and crystallinity of the fibres, as observed by environmental scanning electron microscope (ESEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). The characteristic of the natural fibers produces from durian skins are similar with other types of natural fiber. The average diameter and density are 0.299 mm and 1.243 g/cm3, respectively while the crystallinity index is slightly higher than the common fibers. The properties and charecteristic of durian skin fibers are within the propertise of lignocellulosic fiber which is suitable for development of biocomposite materials.


2020 ◽  
Vol 10 (1) ◽  
pp. 1856-1861

This contribution reports first time synthesis of Cr2O3 nanostructures from chromium (III) chloride hexahydrate precursor using Vernonia amygdalina leaves extract as a reducing and stabilizing agent. Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy techniques were used to study the structural and morphological properties of the as-synthesized Cr2O3 nanostructures. Powder X-ray diffraction patterns spectral analysis showed that hexagonal Cr2O3 nanostructures with an average crystallite size of 23.4 nm were synthesized with the minor appearance of CrO2. SEM images showed that the synthesized nanomaterials are granules. Fourier-transform infrared spectra represent a sharp absorption band at 552 cm-1, which indicates Cr-O-Cr vibrational and stretching modes.


2015 ◽  
Vol 08 (02) ◽  
pp. 1550025 ◽  
Author(s):  
Zhongqi Shi ◽  
Yongyong Zou ◽  
Ruifeng Jing ◽  
Kuo Zhang ◽  
Guanjun Qiao ◽  
...  

Red-emitting Mn 2+-doped AlN ( AlN:Mn 2+) phosphors were successfully prepared by a highly effective combustion synthesis method. The phase purity, morphology, element-composition and luminescence properties of the synthesized phosphors were investigated. X-ray diffraction (XRD) results show that the Mn 2+-doped into the AlN host did not induce a second phase and distort the structure significantly. Scanning electron microscopy (SEM) images display that the phosphors have an irregular shape with a particle size in the range of 1–5 μm. X-ray photoelectron spectroscopy (XPS) spectrum indicates that Mn ions are divalent state. The synthesized AlN:Mn 2+ phosphors exhibit a strong red emission centered at ~ 600 nm, which is ascribe to the 4T1(4G)–6A1(6S) transition of Mn 2+ under ultraviolet excitation. The emission intensity reaches its maximum when Mn 2+-doped concentration is 3 mol%.


2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1238
Author(s):  
Garven M. Huntley ◽  
Rudy L. Luck ◽  
Michael E. Mullins ◽  
Nick K. Newberry

Four naturally occurring zeolites were examined to verify their assignments as chabazites AZLB-Ca and AZLB-Na (Bowie, Arizona) and clinoptilolites NM-Ca (Winston, New Mexico) and NV-Na (Ash Meadows, Nevada). Based on powder X-ray diffraction, NM-Ca was discovered to be mostly quartz with some clinoptilolite residues. Treatment with concentrated HCl (12.1 M) acid resulted in AZLB-Ca and AZLB-Na, the chabazite-like species, becoming amorphous, as confirmed by powder X-ray diffraction. In contrast, NM-Ca and NV-Na, which are clinoptilolite-like species, withstood boiling in concentrated HCl acid. This treatment removes calcium, magnesium, sodium, potassium, aluminum, and iron atoms or ions from the framework while leaving the silicon framework intact as confirmed via X-ray fluorescence and diffraction. SEM images on calcined and HCl treated NV-Na were obtained. BET surface area analysis confirmed an increase in surface area for the two zeolites after treatment, NM-Ca 20.0(1) to 111(4) m2/g and NV-Na 19.0(4) to 158(7) m2/g. 29Si and 27Al MAS NMR were performed on the natural and treated NV-Na zeolite, and the data for the natural NV-Na zeolite suggested a Si:Al ratio of 4.33 similar to that determined by X-Ray fluorescence of 4.55. Removal of lead ions from solution decreased from the native NM-Ca, 0.27(14), NV-Na, 1.50(17) meq/g compared to the modified zeolites, 30 min HCl treated NM-Ca 0.06(9) and NV-Na, 0.41(23) meq/g, and also decreased upon K+ ion pretreatment in the HCl modified zeolites.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Gajanan S. Ghodake ◽  
Surendra K. Shinde ◽  
Ganesh D. Saratale ◽  
Rijuta G. Saratale ◽  
Min Kim ◽  
...  

The utilization of waste-paper-biomass for extraction of important α-cellulose biopolymer, and modification of extracted α-cellulose for application in enzyme immobilization can be extremely vital for green circular bio-economy. Thus, in this study, α-cellulose fibers were super-magnetized (Fe3O4), grafted with chitosan (CTNs), and thiol (-SH) modified for laccase immobilization. The developed material was characterized by high-resolution transmission electron microscopy (HR-TEM), HR-TEM energy dispersive X-ray spectroscopy (HR-TEM-EDS), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) analyses. Laccase immobilized on α-Cellulose-Fe3O4-CTNs (α-Cellulose-Fe3O4-CTNs-Laccase) gave significant activity recovery (99.16%) and laccase loading potential (169.36 mg/g). The α-Cellulose-Fe3O4-CTNs-Laccase displayed excellent stabilities for temperature, pH, and storage time. The α-Cellulose-Fe3O4-CTNs-Laccase applied in repeated cycles shown remarkable consistency of activity retention for 10 cycles. After the 10th cycle, α-Cellulose-Fe3O4-CTNs possessed 80.65% relative activity. Furthermore, α-Cellulose-Fe3O4-CTNs-Laccase shown excellent degradation of pharmaceutical contaminant sulfamethoxazole (SMX). The SMX degradation by α-Cellulose-Fe3O4-CTNs-Laccase was found optimum at incubation time (20 h), pH (3), temperatures (30 °C), and shaking conditions (200 rpm). Finally, α-Cellulose-Fe3O4-CTNs-Laccase gave repeated degradation of SMX. Thus, this study presents a novel, waste-derived, highly capable, and super-magnetic nanocomposite for enzyme immobilization applications.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 346
Author(s):  
Sonam Goyal ◽  
Maizatul Shima Shaharun ◽  
Ganaga Suriya Jayabal ◽  
Chong Fai Kait ◽  
Bawadi Abdullah ◽  
...  

A set of novel photocatalysts, i.e., copper-zirconia imidazolate (CuZrIm) frameworks, were synthesized using different zirconia molar ratios (i.e., 0.5, 1, and 1.5 mmol). The photoreduction process of CO2 to methanol in a continuous-flow stirred photoreactor at pressure and temperature of 1 atm and 25 °C, respectively, was studied. The physicochemical properties of the synthesized catalysts were studied using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. The highest methanol activity of 818.59 µmol/L.g was recorded when the CuZrIm1 catalyst with Cu/Zr/Im/NH4OH molar ratio of 2:1:4:2 (mmol/mmol/mmol/M) was employed. The enhanced yield is attributed to the presence of Cu2+ oxidation state and the uniformly dispersed active metals. The response surface methodology (RSM) was used to optimize the reaction parameters. The predicted results agreed well with the experimental ones with the correlation coefficient (R2) of 0.99. The optimization results showed that the highest methanol activity of 1054 µmol/L.g was recorded when the optimum parameters were employed, i.e., stirring rate (540 rpm), intensity of light (275 W/m2) and photocatalyst loading (1.3 g/L). The redox potential value for the CuZrIm1 shows that the reduction potential is −1.70 V and the oxidation potential is +1.28 V for the photoreduction of CO2 to methanol. The current work has established the potential utilization of the imidazolate framework as catalyst support for the photoreduction of CO2 to methanol.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


Sign in / Sign up

Export Citation Format

Share Document