scholarly journals Caspofungin and LTX-315 inhibit SARS-CoV-2 replication by targeting the nsp12 polymerase

2020 ◽  
Author(s):  
Min Wang ◽  
Fei Ye ◽  
Jiaqi Su ◽  
Jingru Zhao ◽  
Bin Yuan ◽  
...  

Abstract The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously designated as 2019-nCoV) outbreak has caused global concern1. Currently, there are no clinically approved specific drugs or vaccines available for this virus. The viral polymerase is a promising target for developing broad- spectrum antiviral drugs. Here, based on the highly similar structure of SARS- CoV non-structural protein 12 (nsp12) polymerase subunit2, we applied virtual screen for the available compounds, including both the FDA-approved and under- clinic drugs, to identify potential antiviral molecules against SARS-CoV-2. We found two drugs, the clinically approved anti-fungi drug Caspofungin Acetate (Cancidas) and the oncolytic peptide LTX-315, can bind SARS-CoV-2 nsp12 protein to block the polymerase activity in vitro. Further live virus assay revealed that both Caspofungin Acetate and LTX-315 can effectively inhibit SARS-CoV-2 replication in vero cells. These findings present promising drug candidates for treatment of related diseases and would also stimulate the development of pan- coronavirus antiviral agents.Authors Min Wang, Fei Ye, Jiaqi Su, Jingru Zhao, and Bin Yuan contributed equally to this work.

2021 ◽  
Vol 22 (6) ◽  
pp. 3163
Author(s):  
Hirofumi Ohashi ◽  
Feng Wang ◽  
Frank Stappenbeck ◽  
Kana Tsuchimoto ◽  
Chisa Kobayashi ◽  
...  

The development of effective antiviral drugs targeting the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is urgently needed to combat the coronavirus disease 2019 (COVID-19). We have previously studied the use of semi-synthetic derivatives of oxysterols, oxidized derivatives of cholesterol as drug candidates for the inhibition of cancer, fibrosis, and bone regeneration. In this study, we screened a panel of naturally occurring and semi-synthetic oxysterols for anti-SARS-CoV-2 activity using a cell culture infection assay. We show that the natural oxysterols, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 27-hydroxycholesterol, substantially inhibited SARS-CoV-2 propagation in cultured cells. Among semi-synthetic oxysterols, Oxy210 and Oxy232 displayed more robust anti-SARS-CoV-2 activities, reducing viral replication more than 90% at 10 μM and 99% at 15 μM, respectively. When orally administered in mice, peak plasma concentrations of Oxy210 fell into a therapeutically relevant range (19 μM), based on the dose-dependent curve for antiviral activity in our cell-based assay. Mechanistic studies suggest that Oxy210 reduced replication of SARS-CoV-2 by disrupting the formation of double-membrane vesicles (DMVs); intracellular membrane compartments associated with viral replication. Our study warrants further evaluation of Oxy210 and Oxy232 as a safe and reliable oral medication, which could help protect vulnerable populations with increased risk of developing COVID-19.


2020 ◽  
Vol 71 (15) ◽  
pp. 732-739 ◽  
Author(s):  
Xueting Yao ◽  
Fei Ye ◽  
Miao Zhang ◽  
Cheng Cui ◽  
Baoying Huang ◽  
...  

Abstract Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in 2019 and subsequently spread worldwide. Chloroquine has been sporadically used in treating SARS-CoV-2 infection. Hydroxychloroquine shares the same mechanism of action as chloroquine, but its more tolerable safety profile makes it the preferred drug to treat malaria and autoimmune conditions. We propose that the immunomodulatory effect of hydroxychloroquine also may be useful in controlling the cytokine storm that occurs late phase in critically ill patients with SARS-CoV-2. Currently, there is no evidence to support the use of hydroxychloroquine in SARS-CoV-2 infection. Methods The pharmacological activity of chloroquine and hydroxychloroquine was tested using SARS-CoV-2–infected Vero cells. Physiologically based pharmacokinetic (PBPK) models were implemented for both drugs separately by integrating their in vitro data. Using the PBPK models, hydroxychloroquine concentrations in lung fluid were simulated under 5 different dosing regimens to explore the most effective regimen while considering the drug’s safety profile. Results Hydroxychloroquine (EC50 = 0.72 μM) was found to be more potent than chloroquine (EC50 = 5.47 μM) in vitro. Based on PBPK models results, a loading dose of 400 mg twice daily of hydroxychloroquine sulfate given orally, followed by a maintenance dose of 200 mg given twice daily for 4 days is recommended for SARS-CoV-2 infection, as it reached 3 times the potency of chloroquine phosphate when given 500 mg twice daily 5 days in advance. Conclusions Hydroxychloroquine was found to be more potent than chloroquine to inhibit SARS-CoV-2 in vitro.


2009 ◽  
Vol 84 (2) ◽  
pp. 1097-1109 ◽  
Author(s):  
Eric C. Freundt ◽  
Li Yu ◽  
Cynthia S. Goldsmith ◽  
Sarah Welsh ◽  
Aaron Cheng ◽  
...  

ABSTRACT The genome of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) contains eight open reading frames (ORFs) that encode novel proteins. These accessory proteins are dispensable for in vitro and in vivo replication and thus may be important for other aspects of virus-host interactions. We investigated the functions of the largest of the accessory proteins, the ORF 3a protein, using a 3a-deficient strain of SARS-CoV. Cell death of Vero cells after infection with SARS-CoV was reduced upon deletion of ORF 3a. Electron microscopy of infected cells revealed a role for ORF 3a in SARS-CoV induced vesicle formation, a prominent feature of cells from SARS patients. In addition, we report that ORF 3a is both necessary and sufficient for SARS-CoV-induced Golgi fragmentation and that the 3a protein accumulates and localizes to vesicles containing markers for late endosomes. Finally, overexpression of ADP-ribosylation factor 1 (Arf1), a small GTPase essential for the maintenance of the Golgi apparatus, restored Golgi morphology during infection. These results establish an important role for ORF 3a in SARS-CoV-induced cell death, Golgi fragmentation, and the accumulation of intracellular vesicles.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2397 ◽  
Author(s):  
Li Li ◽  
Chen Shen ◽  
Ya-Xuan Huang ◽  
Ya-Nan Li ◽  
Xiu-Feng Liu ◽  
...  

The interaction between proprotein convertase subtilisin/kexin type 9 (PCSK9) and the low-density lipoprotein receptor (LDLR) is a promising target for the treatment of hyperc-holesterolemia. In this study, a new method based on competitive affinity and tag detection was developed, which aimed to evaluate potent natural inhibitors preventing the interaction of PCSK9/LDLR directly. Herein, natural compounds with efficacy in the treatment of hypercholesterolemia were chosen to investigate their inhibitory activities on the PCSK9/LDLR interaction. Two of them, polydatin (1) and tetrahydroxydiphenylethylene-2-O-glucoside (2), were identified as potential inhibitors for the PCSK9/LDLR interaction and were proven to prevent PCSK9-mediated LDLR degradation in HepG2 cells. The results suggested that this strategy could be applied for evaluating potential bioactive compounds inhibiting the interaction of PCSK9/LDLR and this strategy could accelerate the discovery of new drug candidates for the treatment of PCSK9-mediated hypercholesterolemia.


2020 ◽  
Author(s):  
Palayakotai Raghavan

Abstract BackgroundNew pathogenic virus outbreaks, occurring with increasing regularity, are leading us to explore novel approaches, which will reduce the reliance on time-consuming vaccine modes to halt the outbreaks. The requirement is to find a universal approach to disarm any new and as yet unknown viruses as they appear. A promising approach could be targeting lipid membranes, which are common to all viruses and bacteria.The ongoing pandemic of severe acute respiratory syndrome-coronavirus 2 (SARS-COV-2) has reaffirmed the importance of interactions between components of the host cell plasma membrane and the virus envelope as a critical mechanism of infection. Metadichol®, a nano lipid emulsion, has been examined and shown to be a strong candidate to help stop the proliferation of SARS-COV-2.Naturally derived substances, such as long-chain saturated lipid alcohols, reduce the infectivity of various types of viruses, including coronaviruses such as SARS-COV-2, by modifying lipid-dependent attachment to human host cells. SARS-COV-2 uses the receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. MethodsMetadichol was tested against TMPRSS2 ana ACE2 invitro using commercial available kits. Also it was tested against the live virus in Caco2 cells to test for inhibition of viral replication of SARS-COV-2.ResultsMetadichol®, a nano lipid formulation of long-chain alcohols, has been shown to inhibit TMPRSS2 (EC50 96 ng/ml). Compared to the inhibitor camostat mesylate (EC50 26000 ng/ml), it is 270 times more potent. Additionally, Metadichol® is also a weak inhibitor of ACE2 at 31 µg/ml. Further a live virus assay in Caco2 cells, Metadichol® inhibited SARS-CoV-2 replication with an EC90 of 0.16 µg/ml.ConclusionsMetadichol inhibits SARS-COV-2 virus and since it a non toxic molecule can be easily tested in humans and as it has LD 50 of over 5000 mg/kilo and could help mitigate the crisis facing the world today.


2020 ◽  
Author(s):  
Palayakotai Raghavan

Abstract New pathogenic virus outbreaks, occurring with increasing regularity, are leading us to explore novel approaches, which will reduce the reliance on time-consuming vaccine modes to halt the outbreaks. The requirement is to find a universal approach to disarm any new and as yet unknown viruses as they appear. A promising approach could be targeting lipid membranes, which are common to all viruses and bacteria.The ongoing pandemic of severe acute respiratory syndrome-coronavirus 2 (SARS-COV-2) has reaffirmed the importance of interactions between components of the host cell plasma membrane and the virus envelope as a critical mechanism of infection. Metadichol®, a nano lipid emulsion, has been examined and shown to be a strong candidate to help stop the proliferation of SARS-COV-2.Naturally derived substances, such as long-chain saturated lipid alcohols, reduce the infectivity of various types of viruses, including coronaviruses such as SARS-COV-2, by modifying lipid-dependent attachment to human host cells. SARS-COV-2 uses the receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming.Metadichol®, a nano lipid formulation of long-chain alcohols, has been shown to inhibit TMPRSS2 (EC50 96 ng/ml). Compared to the inhibitor camostat mesylate (EC50 26000 ng/ml), it is 270 times more potent. Additionally, Metadichol® is also a extremely weak inhibitor of ACE2 at 31 µg/ml. Further a live virus assay in Caco2 cells, Metadichol® inhibited SARS-CoV-2 replication with an EC90 of 0.16 µg/ml.


Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 6
Author(s):  
Michal Stefanik ◽  
Fortunatus C Ezebuo ◽  
Jan Haviernik ◽  
Ikemefuna C. Uzochukwu ◽  
Martina Fojtikova ◽  
...  

Arthropod-borne flaviviruses such as tick-borne encephalitis virus (TBEV), West Nile virus (WNV), Zika virus (ZIKV), Dengue virus (DENV), and yellow fever virus (YFV) cause several serious life-threatening syndromes (encephalitis, miscarriages, paralysis, etc.). No effective antiviral therapy against these viruses has been approved yet. We selected, via in silico modeling, 12 U.S. Food and Drug Administration (FDA)-approved antiviral drugs (paritaprevir, dolutegravir, raltegravir, efavirenz, elvitegravir, tipranavir, saquinavir, dasabuvir, delavirdine, maraviroc, trifluridine, and tauroursodeoxycholic acid) for their interaction with ZIKV proteins (NS3 helicase and protease, non-structural protein 5 (NS5) RNA-dependent RNA polymerase, and methyltransferase). Only three of them were active against ZIKV, namely, dasabuvir (ABT-333), efavirenz, and tipranavir. These compounds inhibit virus replication of ZIKV (MR-766 and Paraiba_01) in Vero cells; therefore, we tested these compounds against other medically important flaviviruses WNV (13-104 and Eg101) and TBEV (Hypr). Dasabuvir was originally developed as an antiviral drug against hepatitis C virus (HCV); tipranavir and efavirenz are used for treating human immunodeficiency virus (HIV) infection. The antiviral effects of efavirenz, tipranavir, and dasabuvir were tested for ZIKV in HUH-7, astrocytes (HBCA), and UKF-NB-4 cells, where we also identified a significant inhibition effect of these compounds. For Vero cells, efavirenz inhibited all investigated viruses with EC50 ranging from 9.70 to 29.26 µM; the tipranavir inhibition effect was from 16.19 (WNV 13-104) to 27.47 µM (TBEV), while the strongest and most robust antiviral effect was demonstrated in the case of dasabuvir (EC50 values ranging from 9.09 (TBEV) to 10.85 µM (WNV 13-104)). These results warrant further research of these drugs, either individually or in combination, as possible pan-flavivirus inhibitors.


2012 ◽  
Vol 56 (8) ◽  
pp. 4277-4288 ◽  
Author(s):  
Dawei Cai ◽  
Courtney Mills ◽  
Wenquan Yu ◽  
Ran Yan ◽  
Carol E. Aldrich ◽  
...  

ABSTRACTHepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a central role in viral infection and persistence and is the basis for viral rebound after the cessation of therapy, as well as the elusiveness of a cure even after extended treatment. Therefore, there is an urgent need for the development of novel therapeutic agents that directly target cccDNA formation and maintenance. By employing an innovative cell-based cccDNA assay in which secreted HBV e antigen is a cccDNA-dependent surrogate, we screened an in-house small-molecule library consisting of 85,000 drug-like compounds. Two structurally related disubstituted sulfonamides (DSS), termed CCC-0975 and CCC-0346, emerged and were confirmed as inhibitors of cccDNA production, with low micromolar 50% effective concentrations (EC50s) in cell culture. Further mechanistic studies demonstrated that DSS compound treatment neither directly inhibited HBV DNA replication in cell culture nor reduced viral polymerase activity in thein vitroendogenous polymerase assay but synchronously reduced the levels of HBV cccDNA and its putative precursor, deproteinized relaxed circular DNA (DP-rcDNA). However, DSS compounds did not promote the intracellular decay of HBV DP-rcDNA and cccDNA, suggesting that the compounds interfere primarily with rcDNA conversion into cccDNA. In addition, we demonstrated that CCC-0975 was able to reduce cccDNA biosynthesis in duck HBV-infected primary duck hepatocytes. This is the first attempt, to our knowledge, to identify small molecules that target cccDNA formation, and DSS compounds thus potentially serve as proof-of-concept drug candidates for development into therapeutics to eliminate cccDNA from chronic HBV infection.


2005 ◽  
Vol 79 (3) ◽  
pp. 1635-1644 ◽  
Author(s):  
Edward N. van den Brink ◽  
Jan ter Meulen ◽  
Freek Cox ◽  
Mandy A. C. Jongeneelen ◽  
Alexandra Thijsse ◽  
...  

ABSTRACT Human monoclonal antibodies (MAbs) were selected from semisynthetic antibody phage display libraries by using whole irradiated severe acute respiratory syndrome (SARS) coronavirus (CoV) virions as target. We identified eight human MAbs binding to virus and infected cells, six of which could be mapped to two SARS-CoV structural proteins: the nucleocapsid (N) and spike (S) proteins. Two MAbs reacted with N protein. One of the N protein MAbs recognized a linear epitope conserved between all published human and animal SARS-CoV isolates, and the other bound to a nonlinear N epitope. These two N MAbs did not compete for binding to SARS-CoV. Four MAbs reacted with the S glycoprotein, and three of these MAbs neutralized SARS-CoV in vitro. All three neutralizing anti-S MAbs bound a recombinant S1 fragment comprising residues 318 to 510, a region previously identified as the SARS-CoV S receptor binding domain; the nonneutralizing MAb did not. Two strongly neutralizing anti-S1 MAbs blocked the binding of a recombinant S fragment (residues 1 to 565) to SARS-CoV-susceptible Vero cells completely, whereas a poorly neutralizing S1 MAb blocked binding only partially. The MAb ability to block S1-receptor binding and the level of neutralization of the two strongly neutralizing S1 MAbs correlated with the binding affinity to the S1 domain. Finally, epitope mapping, using recombinant S fragments (residues 318 to 510) containing naturally occurring mutations, revealed the importance of residue N479 for the binding of the most potent neutralizing MAb, CR3014. The complete set of SARS-CoV MAbs described here may be useful for diagnosis, chemoprophylaxis, and therapy of SARS-CoV infection and disease.


2006 ◽  
Vol 87 (9) ◽  
pp. 2621-2630 ◽  
Author(s):  
Jacques Rohayem ◽  
Katrin Jäger ◽  
Ivonne Robel ◽  
Ulrike Scheffler ◽  
Achim Temme ◽  
...  

Norovirus (NV) 3Dpol is a non-structural protein predicted to play an essential role in the replication of the NV genome. In this study, the characteristics of NV 3Dpol activity and initiation of RNA synthesis have been examined in vitro. Recombinant NV 3Dpol, as well as a 3Dpol active-site mutant were expressed in Escherichia coli and purified. NV 3Dpol was able to synthesize RNA in vitro and displayed flexibility with respect to the use of Mg2+ or Mn2+ as a cofactor. NV 3Dpol yielded two different products when incubated with synthetic RNA in vitro: (i) a double-stranded RNA consisting of two single strands of opposite polarity or (ii) the single-stranded RNA template labelled at its 3′ terminus by terminal transferase activity. Initiation of RNA synthesis occurred de novo rather than by back-priming, as evidenced by the fact that the two strands of the double-stranded RNA product could be separated, and by dissociation in time-course analysis of terminal transferase and RNA synthesis activities. In addition, RNA synthesis was not affected by blocking of the 3′ terminus of the RNA template by a chain terminator, sustaining de novo initiation of RNA synthesis. NV 3Dpol displays in vitro properties characteristic of RNA-dependent RNA polymerases, allowing the implementation of this in vitro enzymic assay for the development and validation of antiviral drugs against NV, a so far non-cultivated virus and an important human pathogen.


Sign in / Sign up

Export Citation Format

Share Document