scholarly journals Experimental disclosing the composition- and structure-dependent deep-level defect in photovoltaic antimony trisulfide materials

Author(s):  
Weitao Lian ◽  
Chen-Hui Jiang ◽  
Yiwei Yin ◽  
Rongfeng Tang ◽  
Gang Li ◽  
...  

Abstract Antimony trisulfide (Sb2S3) represents a kind of emerging light-harvesting material with excellent stability and abundant elemental storage. Due to the low-symmetry, theoretical investigation has pointed out that there exists complicated defect properties. However, there is no experimental verification on the defect property. Here, we conduct optical deep-level transient spectroscopy to investigate defect properties in Sb2S3 and show that there are maximum three kinds of deep level defects observed, depending on the composition of Sb2S3. We also find that the Sb-interstitial (Sbi) defect does not show critical influence on the carrier lifetime, indicating the high tolerance of the one-dimensional crystal structure where the space of (Sb4S6)n ribbons is able to accommodate impurities to certain extent. This work provides basic understanding on the defect properties of quasi-one-dimensional materials and a guidance for the efficiency improvement of Sb2S3 solar cells.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weitao Lian ◽  
Chenhui Jiang ◽  
Yiwei Yin ◽  
Rongfeng Tang ◽  
Gang Li ◽  
...  

AbstractAntimony trisulfide (Sb2S3) is a kind of emerging light-harvesting material with excellent stability and abundant elemental storage. Due to the quasi-one-dimensional symmetry, theoretical investigations have pointed out that there exist complicated defect properties. However, there is no experimental verification on the defect property. Here, we conduct optical deep-level transient spectroscopy to investigate defect properties in Sb2S3 and show that there are maximum three kinds of deep-level defects observed, depending on the composition of Sb2S3. We also find that the Sb-interstitial (Sbi) defect does not show critical influence on the carrier lifetime, indicating the high tolerance of the one-dimensional crystal structure where the space of (Sb4S6)n ribbons is able to accommodate impurities to certain extent. This study provides basic understanding on the defect properties of quasi-one-dimensional materials and a guidance for the efficiency improvement of Sb2S3 solar cells.


1976 ◽  
Vol 80 (2) ◽  
pp. 365-381 ◽  
Author(s):  
G. Ronca

Since the publication of the fundamental papers by Lifshitz (1, 2) and Montroll and Potts (3, 4) many authors have investigated the effect of an isotopic impurity on the lattice vibrations of a harmonic crystal at zero temperature. A fairly broad knowledge is now available on scattering amplitudes, localized modes and resonance modes (6, 7). Nevertheless, as pointed out by Maradudin and Montroll (see (7), p. 430), a closed form solution to the problem has been found only for the one-dimensional crystal, the work done on two and three-dimensional crystals being predominantly numerical. Unfortunately the one-dimensional crystal, as an approximation for a real crystal is an oversimplified model, incapable as it is of exhibiting resonance modes. To the author's knowledge the most significant exact result concerning the classical behaviour at zero temperature of crystals having a dimensionality higher than one is the connexion, calculated by Mahanty et al. (5) between localized mode frequency and impurity mass for the case of a square lattice undergoing planar vibrations.


2017 ◽  
Vol 897 ◽  
pp. 238-241 ◽  
Author(s):  
Louise Lilja ◽  
Ildiko Farkas ◽  
Ian Booker ◽  
Jawad ul Hassan ◽  
Erik Janzén ◽  
...  

In this study we have grown thick 4H-SiC epitaxial layers with different n-type doping levels in the range 1E15 cm-3 to mid 1E18 cm-3, in order to investigate the influence on carrier lifetime. The epilayers were grown with identical growth conditions except the doping level on comparable substrates, in order to minimize the influence of other parameters than the n-type doping level. We have found a drastic decrease in carrier lifetime with increasing n-type doping level. Epilayers were further characterized with low temperature photoluminescence and deep level transient spectroscopy.


2007 ◽  
Vol 994 ◽  
Author(s):  
Eugenijus Gaubas ◽  
Jan Vanhellemont ◽  
Eddy Simoen ◽  
Antoon Theuwis ◽  
Paul Clauws

AbstractThe impact of metallic impurities on the carrier lifetime in n-Ge is studied using microwave reflection and absorption techniques. Co, Fe, Ti, Ni and Cr are introduced by ion implantation followed by a thermal anneal and quenching to room temperature. Excess carrier decay transients are examined by microwave reflection and absorption probing after pulsed light excitation. A detailed analysis allows to evaluate the ratio of the capture cross-sections for minority and majority carriers revealing an acceptor-like character of the metal induced traps. Cross-sectional lifetime measurements show an U-shaped depth distribution with the lowest lifetimes in the bulk of the wafer. The lifetime results are correlated with those of deep level transient spectroscopy in order to clarify the properties of the dominant metal related recombination centres. Fe and Co are the most effective lifetime killers in n-Ge while Cr has the least influence.


2013 ◽  
Vol 740-742 ◽  
pp. 633-636 ◽  
Author(s):  
Birgit Kallinger ◽  
Patrick Berwian ◽  
Jochen Friedrich ◽  
Mathias Rommel ◽  
Maral Azizi ◽  
...  

4H-SiC homoepitaxial layers with different thicknesses from 12.5 µm up to 50 µm were investigated by microwave-detected photoconductivity decay (µ-PCD), deep level transient spectroscopy (DLTS) and defect selective etching (DSE) to shed light on the influence of the epilayer thickness and structural defects on the effective minority carrier lifetime. It is shown that the effective lifetime, resulting directly from the µ-PCD measurement, is significantly influenced by the surface recombination lifetime. Therefore, an adequate correction of the measured data is necessary to determine the bulk lifetime. The bulk lifetime of these epilayers is in the order of several microseconds. Furthermore, areas with high dislocation density are correlated to areas with locally reduced effective lifetime.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tiezheng Lv ◽  
Lili Zhao

Si nanocrystal (NC) embedded into the SiO2matrix was made by SiO/SiO2superlattice method. Here we investigate the storage phenomena of MOS structure having Si NC inside the dielectric layer by high frequencyC-Vmethod and DLTS. DLTS treated the individual Si NC as a single point deep level defect in the oxide and revealed essences of Si NC storage, such as a large capture cross section at about 1–7 × 10−13 cm2and potential barrier at about 1.6 eV. These two properties we observed are consistent with Si NC dimensions of 5–7 nm in the planar TEM image, and previousI-Vcharacterization in the MOS-like structure. These results are helpful to understand the principle of charge storage of this structure and optimize the performance of real Si NC device. The trapping mechanism in MOS systems containing Si NCs is related to the quantum levels of the Si NC band structure at around 300 K.


1949 ◽  
Vol 2 (6) ◽  
pp. 366-369 ◽  
Author(s):  
J. D. H. Donnay ◽  
G. H. Donnay

Sign in / Sign up

Export Citation Format

Share Document