On the Impact of Metal Impurities on the Carrier Lifetime in N-type Germanium

2007 ◽  
Vol 994 ◽  
Author(s):  
Eugenijus Gaubas ◽  
Jan Vanhellemont ◽  
Eddy Simoen ◽  
Antoon Theuwis ◽  
Paul Clauws

AbstractThe impact of metallic impurities on the carrier lifetime in n-Ge is studied using microwave reflection and absorption techniques. Co, Fe, Ti, Ni and Cr are introduced by ion implantation followed by a thermal anneal and quenching to room temperature. Excess carrier decay transients are examined by microwave reflection and absorption probing after pulsed light excitation. A detailed analysis allows to evaluate the ratio of the capture cross-sections for minority and majority carriers revealing an acceptor-like character of the metal induced traps. Cross-sectional lifetime measurements show an U-shaped depth distribution with the lowest lifetimes in the bulk of the wafer. The lifetime results are correlated with those of deep level transient spectroscopy in order to clarify the properties of the dominant metal related recombination centres. Fe and Co are the most effective lifetime killers in n-Ge while Cr has the least influence.

2013 ◽  
Vol 740-742 ◽  
pp. 633-636 ◽  
Author(s):  
Birgit Kallinger ◽  
Patrick Berwian ◽  
Jochen Friedrich ◽  
Mathias Rommel ◽  
Maral Azizi ◽  
...  

4H-SiC homoepitaxial layers with different thicknesses from 12.5 µm up to 50 µm were investigated by microwave-detected photoconductivity decay (µ-PCD), deep level transient spectroscopy (DLTS) and defect selective etching (DSE) to shed light on the influence of the epilayer thickness and structural defects on the effective minority carrier lifetime. It is shown that the effective lifetime, resulting directly from the µ-PCD measurement, is significantly influenced by the surface recombination lifetime. Therefore, an adequate correction of the measured data is necessary to determine the bulk lifetime. The bulk lifetime of these epilayers is in the order of several microseconds. Furthermore, areas with high dislocation density are correlated to areas with locally reduced effective lifetime.


1997 ◽  
Vol 484 ◽  
Author(s):  
J. G. Cederberg ◽  
B. Bieg ◽  
J.-W. Huang ◽  
S. A. Stockman ◽  
M. J. Peanasky ◽  
...  

AbstractOxygen related defects in Al-containing semiconductors have been determined to degrade luminescence efficiency and reduce free carrier lifetime, affecting the performance of light emitting diodes and laser diodes. We have used the oxygen doping source, diethylaluminum ethoxide, (C2H5)2A1OC2H5, to intentionally incorporate oxygen-related defects during growth of In0.5(AlxGa1−x)0.5P by Metalorganic Vapor Phase Epitaxy (MOVPE). Our investigations have identified several defects which are ‘intrinsic’ or present in non-intentionally oxygen-doped n-type In0.5(AlxGa1−x)0.5P as well as those due to oxygen, which introduces defect states near the middle of the conduction band. Deep level transient spectroscopy and photoluminescence data obtained for these defects over a range of composition, are presented illustrating the trends in defect structure with alloy composition. The impact of oxygen contamination on the visible emission spectrum is presented and discussed in terms of the defect structure.


1999 ◽  
Vol 43 (03) ◽  
pp. 180-193 ◽  
Author(s):  
Odd M. Faltinsen

Water entry of a hull with wedge-shaped cross sections is analyzed. The stiffened platings between two transverse girders on each side of the keel are separately modeled. Orthotropic plate theory is used. The effect of structural vibrations on the fluid flow is incorporated by solving the two-dimensional Laplace equation in the cross-sectional fluid domain by a generalized Wagner's theory. The coupling with the plate theory provides three-dimensional flow effects. The theory is validated by comparison with full-scale experiments and drop tests. The importance of global ship accelerations is pointed out. Hydrodynamic and structural error sources are discussed. Systematic studies on the importance of hydroelasticity as a function of deadrise angle and impact velocity are presented. This can be related to the ratio between the wetting time of the structure and the greatest wet natural period of the stiffened plating. This ratio is proportional to the deadrise angle and inversely proportional to the impact velocity. A small ratio-means that hydroelasticity is important and a large ratio means that hydroelasticity is not important.


1998 ◽  
Vol 535 ◽  
Author(s):  
Daewon Kwon ◽  
R. J. Kaplar ◽  
J. J. Boeckl ◽  
S. A. Ringel ◽  
A. A. Allerman ◽  
...  

AbstractDeep level defects in MOCVD-grown, unintentionally doped p-type InGaAsN films lattice matched to GaAs were investigated using deep level transient spectroscopy (DLTS) measurements. As-grown p-InGaAsN showed broad DLTS spectra suggesting that there exists a broad distribution of defect states within the band-gap. Moreover, the trap densities exceeded 1015 cm−3. Cross sectional transmission electron microscopy (TEM) measurements showed no evidence for threading dislocations within the TEM resolution limit of 107 cm−2. A set of samples was annealed after growth for 1800 seconds at 650 °C to investigate the thermal stability of the traps. The DLTS spectra of the annealed samples simplified considerably, revealing three distinct hole trap levels with energy levels of 0.10 eV, 0.23 eV, and 0.48 eV above the valence band edge with trap concentrations of 3.5 × 1014 cm−3, 3.8 × 1014 cm−3, and 8.2 × 1014 cm−3, respectively. Comparison of as-grown and annealed DLTS spectra showed that post-growth annealing effectively reduced the total trap concentration by an order of magnitude across the bandgap. However, the concentration of a trap with an energy level of 0.48 eV was not affected by annealing indicating a higher thermal stability for this trap as compared with the overall distribution of shallow and deep traps.


2017 ◽  
Vol 897 ◽  
pp. 238-241 ◽  
Author(s):  
Louise Lilja ◽  
Ildiko Farkas ◽  
Ian Booker ◽  
Jawad ul Hassan ◽  
Erik Janzén ◽  
...  

In this study we have grown thick 4H-SiC epitaxial layers with different n-type doping levels in the range 1E15 cm-3 to mid 1E18 cm-3, in order to investigate the influence on carrier lifetime. The epilayers were grown with identical growth conditions except the doping level on comparable substrates, in order to minimize the influence of other parameters than the n-type doping level. We have found a drastic decrease in carrier lifetime with increasing n-type doping level. Epilayers were further characterized with low temperature photoluminescence and deep level transient spectroscopy.


2003 ◽  
Vol 763 ◽  
Author(s):  
Richard S. Crandall

AbstractThis paper presents data showing a Meyer-Neldel rule (MNR) in InGaAsN alloys. It is shown that without this knowledge, significant errors will be made using Deep-Level Transient-Spectroscopy (DLTS) emission data to determine capture cross sections. By correctly accounting for the MNR in analyzing the DLTS data the correct value of the cross section is obtained.


2004 ◽  
Vol 126 (3) ◽  
pp. 527-534 ◽  
Author(s):  
Ravinder B. Siripuram ◽  
Lyndon S. Stephens

This paper presents a numerical study of the effects of different shapes of deterministic microasperities in sliding surface lubrication when hydrodynamic films are found. Positive (protruding) and negative (recessed) asperities of constant height (depth) are considered with circular, square, diamond, hexagonal and triangular cross-sections. Of particular interest is the impact of asperity/cavity cross-sectional geometry on friction and leakage, which has importance in sealing applications. The results indicate that the friction coefficient is insensitive to asperity/cavity shape, but quite sensitive to the size of the cross-section. By contrast, leakage rates are found to be quite sensitive to both cross-sectional shape and size, with triangular asperities giving the smallest leakage rate and square asperities giving a largest leakage rate. The minimum coefficient of friction for all shapes is found to occur at an asperity area fraction of 0.2 for positive asperities and 0.7 for negative asperities. Finally, the results indicate the existence of a critical asperity area fraction where the performance curves for positive and negative asperities cross over. These cross-over points are identified for friction coefficient and leakage rate.


1994 ◽  
Vol 373 ◽  
Author(s):  
A. Castaldini ◽  
A. Cavallini ◽  
C. Del Papa ◽  
G. Fuochi ◽  
M. Alietti ◽  
...  

AbstractSemi-insulating gallium arsenide has been irradiated by protons and by gamma-rays with different doses. The irradiation-induced deep level defects have been investigated by current transient spectroscopy to find their energy, capture cross sections and generation rate.Two electron traps at Ec+0.14eV(E13) and Ec-0.70eV(E4) and a hole trap at Ec-0.14eV(H2) in addition to the levels existing before the irradiation have been detected in the irradiated samples. These findings have been related to the performance of gallium arsenide charge particle detectors.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 47 ◽  
Author(s):  
Giuseppe Francesco Cesare Lama ◽  
Alessandro Errico ◽  
Simona Francalanci ◽  
Luca Solari ◽  
Federico Preti ◽  
...  

This study presents a methodology for improving the efficiency of Baptist and Stone and Shen models in predicting the global water flow resistance of a reclamation channel partly vegetated by rigid and emergent riparian plants. The results of the two resistance models are compared with the measurements collected during an experimental campaign conducted in a reclamation channel colonized by Common reed (Phragmites australis (Cav.) Trin. ex Steud.). Experimental vegetative Chézy’s flow resistance coefficients have been retrieved from the analysis of instantaneous flow velocity measurements, acquired by means of a downlooking 3-component acoustic Doppler velocimeter (ADV) located at the channel upstream cross section, and by water level measurements obtained through four piezometers distributed along the reclamation channel. The main morphometrical vegetation features (i.e., stem diameters and heights, and bed surface density) have been measured at six cross sections of the vegetated reclamation channel. Following the theoretical assumptions of the divided channel method (DCM), three sub-sections have been delineated in the reference cross section to represent the impact of the partial vegetation cover on the cross sectional variability of the flow field, as observed with the ADV measurements. The global vegetative Chézy’s flow resistance coefficients have been then computed by combining each resistance model with four different composite cross section methods, respectively suggested by Colebatch, Horton, Pavlovskii, and Yen. The comparative analysis between the modeled and the experimental vegetative Chézy’s coefficients has been performed by computing the relative prediction error (εr, expressed in %) under two flow rate regimes. Stone and Shen model combined with the Horton composite cross section method provides vegetative Chézy’s coefficients with the lowest εr.


Sign in / Sign up

Export Citation Format

Share Document