scholarly journals Machinability Analysis of Delamination and Thrust Force in Drilling of Pure and Added GFRP Composites

Author(s):  
Ali Unuvar ◽  
Osman Öztürk

Abstract The aim of this work is to define the cutting conditions that allow the drilling of added glass fiber reinforced epoxy composite materials by taking into consideration the exit delamination factor, thrust force and the optimum combination of drilling parameters. The experiments were carried out under two cutting parameters such as cutting speed and feed rate for three levels each. Taguchi experimental design is used to reduce the excessive number of experiments. The experiment design was accomplished by application of the statistical analysis of variance (ANOVA). Correlations between cutting speed/feed rate and the various machining parameters were established to optimize cutting conditions. These correlations were found by quadratic regression using response surface methodology (RSM). Multiple regression analysis (MRA) was also employed to establish parametric relationships between the experimental parameters and the machinability outputs consisting of delamination and thrust force. The machinability refers to the relative ease or difficulty under certain cutting conditions. Therefore, it is very important to understand the factors affect the machinability and to evaluate their effects. Machinability of GFRP composites was enquired. It is aimed to evaluate the machinability of these materials. A machinability index has been developed in current study.

Author(s):  
Panchagnula Kishore Kumar ◽  
Panchagnula Jayaprakash Sharma

Abstract Drilling is most commonly used secondary machining process for structural joining of Glass Fiber Reinforced Plastic (GFRP) composites. Performing drilling operations on GFRPs/Multi-Walled CarbonNanoTubes (MWCNTs) reinforced GFRPs is really a challenging task due to their non-homogeneity and anisotropic behavior, which directs to generation of material damages. The prime focus of current work is to identify the suitable process parameters for enhancing the performance of drilling of GFRP nanocomposites. In this study, the drilling experiments are conducted on 0.3wt.% MWCNT-GFRP nanocomposites with solid carbide, TiCN and TiAlN coated drills (6mm diameter) under dry and chilled air cutting environments. The dry drilling experiments are conducted without any assistance of cooling fluid in ambient condition. The chilled air at a temperature of 3°C was supplied from the vortex tube. Experimental data is used for ANOVA (balanced) analysis. The cutting parameters such as feed rate, cutting speed and tool type (coating) are considered as input and the measured thrust force, delamination factor and AE RMS signal are treated as output responses. From ANOVA results, it is observed that the influence of feed rate is more on thrust force as compared to cutting speed. The coefficients of determination (R2) shows good fit between thrust force and cutting parameters and the corresponding confidence levels are above 98% for all cutting environments. Similarly, R2 values of delamination factor and AE RMS signals are above 90% and 96% respectively. The minimum thrust force and torque values are noted as 12.61 N and 0.152 N-m respectively at lower feed rate (10 mm/min) and higher cutting speed (1500 RPM) using TiCN coated drill under chilled air cutting environment. The delamination factor is also low (1.025) under the same cutting conditions of minimum cutting forces. A good correlation exists between the thrust force vs. delamination factor (> 0.85) and the delamination factor vs. AE RMS signal (> 0.80) for the selected cutting environments. The recommended range of RMS voltage is 0.083 to 0.121 volts for producing the delamination free holes on GFRP nanocomposites.


2020 ◽  
pp. 089270572093916
Author(s):  
Nafiz Yaşar ◽  
Mustafa Günay ◽  
Erol Kılık ◽  
Hüseyin Ünal

In this study, the mechanical and machinability characteristics of chitosan (Cts)-filled polypropylene (PP) composites produced by injection molding method were analyzed. Uniaxial tensile, impact, hardness, and three-point flexural tests were used to observe the influence of Cts filler on the mechanical behavior of PP. For the machinability analysis of these materials, drilling experiments based on Taguchi’s L27 orthogonal array were performed using different drill qualities and machining parameters. Then, machining conditions are optimized through grey relational analysis methodology for machinability characteristics such as thrust force and surface roughness obtained from drilling tests. The results showed that tensile, flexural strength, and percentage elongation decreased while impact strength increased with adding the Cts filler to PP. Moreover, it was determined that the tensile and flexural modulus of elasticity increased significantly and there was a slight increase in hardness. Thrust forces decreased while surface roughness values increased when the Cts filler ratio and feed rate was increased. The optimal machining conditions for minimizing thrust force and surface roughness was obtained as PP/10 wt% Cts material, uncoated tungsten carbide drill, feed rate of 0.05 mm/rev, and cutting speed of 40 m/min. In this regard, PP composite reinforced by 10 wt% Cts is recommended for industrial applications in terms of both the mechanical and machinability characteristics.


2012 ◽  
Vol 504-506 ◽  
pp. 1335-1340 ◽  
Author(s):  
Giuseppina Ambrogio ◽  
Serena di Renzo ◽  
Francesco Gagliardi ◽  
Domenico Umbrello

This paper presents a study of the influence of cutting conditions on the finished surface obtained after an hard turning process, in particular a case study is presented where AISI 52100 bearing steel is machined under different cutting conditions. An analysis carried out using Surface Response Methodology has been developed in order to study the influence of the main cutting parameters such as cutting speed, feed rate and workpiece initial hardness on white (WL) and dark layer (DL) thickness. The whole experimental campaign has been performed using a chamfered PCBN tool inserts without any cutting fluid. Results show an evident influence of cutting speed and feed rate on both white and dark layer thickness while less relevant is the contribute given from the workpiece hardness on defining WL and DL depth. Finally, a model to find the optimal process conditions to minimize white and dark layer thickness is developed.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1181
Author(s):  
Dinh Son Tran ◽  
Victor Songmene ◽  
Anh Dung Ngo ◽  
Jules Kouam ◽  
Arturo Rodriguez-Uribe ◽  
...  

The machinability of composite materials depends on reinforcements, matrix properties, cutting parameters, and on the cutting tool used (material, coating, and geometry). For new composites, experimental studies must be performed in order to understand their machinability, and thereby help manufacturers establishing appropriate cutting data. In this study, investigations are conducted to analyze the effects of cutting parameters and drill bit diameter on the thrust force, surface roughness, specific cutting energy, and dust emission during dry drilling of a new hybrid biocomposite consisting of polypropylene reinforced with miscanthus fibers and biochar. A full factorial design was used for the experimental design. It was found that the feed rate, the spindle speed, and the drill bit diameter have significant effects on the thrust force, the surface roughness, and the specific cutting energy. The effects of the machining parameters and the drill bit diameter on ultrafine particles emitted were not statistically significant, while the feed rate and drill bit diameter had significant effects on fine particle emission.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
M. Nurhaniza ◽  
M. K. A. M. Ariffin ◽  
F. Mustapha ◽  
B. T. H. T. Baharudin

The quality of the machining is measured from surface finished and it is considered as the most important aspect in composite machining. An appropriate and optimum machining parameters setting is crucial during machining operation in order to enhance the surface quality. The objective of this research is to analyze the effect of machining parameters on the surface quality of CFRP-Aluminium in CNC end milling operation with PCD tool. The milling parameters evaluated are spindle speed, feed rate, and depth of cut. The L9 Taguchi orthogonal arrays, signal-to-noise (S/N) ratio, and analysis of variance (ANOVA) are employed to analyze the effect of these cutting parameters. The analysis of the results indicates that the optimal cutting parameters combination for good surface finish is high cutting speed, low feed rate, and low depth of cut.


2018 ◽  
Vol 18 (2) ◽  
pp. 98-106
Author(s):  
Marian BARTOSZUK ◽  
Munish Kumar GUPTA

The optimization of surface roughness values considered as one of the most significant issues regarding turning process of titanium alloys with the use of minimum quantity lubrication (MQL) method. With such an aim in mind, the application of TOPSIS-AHP method is implemented in order to establish the most favourable cutting parameters for the following values of surface roughness: Ra, Rq and Rz in machining of titanium alloys regarding MQL conditions. The proposed methodology consists of the two stages. At the beginning, tests on turning process were performed on CNC lathe, taking feed rate, approach angle, and cutting speed as input parameters. Then, the TOPSIS-AHP method was applied on the given experimental data and the optimum machining parameters were determined. The findings from current investigations showed that, lower values of cutting speed, feed rate and middle value of approach angle shows the optimal results.


This project was done to learn the effects of cutting parameters on cutting force and roughness (surface roughnes) of AZ31 magnesium (Mg) alloy. Machining parameters involved in this project are cutting speed, feed rate, and lubrication methods. Deckel Maho DMU 50 eVolution high speed milling machine was using and uncoated carbide button insert was used as the cutting tool. Cutting force was measured during the milling process and roughness was measured after that and cleaning process to ensure no interference that would conflicted the results. The best machining parameters identified when feed rate at 0.05 mm per tooth, cutting speed are at 600 m per min, and minimum quantity lubrication was applied during the machining process. From analysis of variance (ANOVA) table generated by Minitab software, this project can conclude that feed rate, cutting speed, and lubrication methods are significant to cutting force and roughness when machining AZ31 Mg Alloy Therefore, the relationship of surface roughness and cutting force should be taken as a major key point in machining processes. In the automotive field, magnesium was used to fabricate an engine that place at front body due to reduce the weight of vehicle. This design can increase performance and balancing of weight [1].


2021 ◽  
Author(s):  
Erol KILICKAP ◽  
Yahya Hışman Celik ◽  
Burak Yenigun

Abstract The drilling operation of glass fiber reinforced plastic (GFRP) composites has gained importance because they are used as structural components in many industries such as aerospace and aviation. In the drilling of GFRP composites, some problems such as deformation and fiber breakage occur. Thrust force, delamination, surface quality and cutting temperature are affected by drilling parameters and woven types in the drilling of GFRP composites. At the same time, delamination also affects tensile strength. In this study, the effects of drilling parameters and woven types of GFRP composites on thrust force, surface roughness, delamination factor, and cutting temperature were examined in the drilling of GFRP composites produced in unidirectional (UD), ± 45º and 0°/90º woven types. The effects of drilling parameters and the delamination factor on the tensile strength of the drilled specimen were also investigated. The result of this study indicated that thrust force, delamination factor, and surface roughness increased with increasing cutting speed and feed rate. An increase in feed rate decreased the cutting temperature while an increase in cutting speed increased the cutting temperature. Also, it was found that the delamination had a critical influence on the tensile strength of the GFRP composites.


POROS ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 51
Author(s):  
Sobron Y. Lubis ◽  
Rosehan Rosehan ◽  
Musa Law

During face milling machining, several machining parameters such as feed rate and cuttingspeed determine the surface quality of the workpiece produced by the process. The selection of the rightparameters will lead to the surface quality as planned. Therefore, to improve machining effectiveness, amethod is needed to determine the appropriate machining parameters to produce the desired surfacequality. This research was conducted using a milling machine, five variations of cutting speed and fivevariations of feed rate were used to cut the workpiece aluminum alloy 7075. After machining, the surfaceroughness was measured using a surface test. The surface roughness value is then substituted into thefeed rate equation and effective cutting speed. By finding effective cutting parameters, the machiningprocess will be more efficient and effective without using unnecessary resources. From the results of thestudy note that the development equation to determine the feed rate based on the value of surfaceroughness is ???? = 0,6????√???? ????????0.443mm/tooth. Development equation to determine the effective cutting speedbased on Surface roughness value is ???????? = 3.0686????????0.124 mm/min


2010 ◽  
Vol 443 ◽  
pp. 342-346 ◽  
Author(s):  
Mouleeswaran Senthil Kumar ◽  
Vijayan Krishnaraj

The paper discusses the influence of cutting parameters such as cutting speed, feed rate and point angle on thrust force and torque while drilling of Glass Fiber Reinforced Plastic (GFRP) composites with Silican Carbide (SiC) fillers. The experiments were conducted during the drilling of GFRP with SiC fillers using four standard twist drills of point angles 90º, 100º, 110º and 120º. Conclusions thus drawn are presented and can be useful for the selection of the best cutting parameters.


Sign in / Sign up

Export Citation Format

Share Document