Comparative DFT study on selective hydrogenation of acrolein catalyzed by pure Mo2C(001) and Pt/Mo2C(001)
Abstract In this paper, Density Functional Theory (DFT) calculations were conducted to study the adsorption and stepwise hydrogenation of acrolein (CH 2 =CHCH=O) on pure Mo 2 C(001) and Pt/Mo 2 C(001). The electronic properties were investigated by Mulliken population analysis. The results showed that Mo atoms obtained some electrons from surrounding Pt and C atoms, thereby enhancing the hydrogenation activity of Mo atoms around Pt atoms and forming local active sites dominated by Mo atoms around Pt atoms. As a result, the adsorption energy of the species on Pt/Mo 2 C(001) is generally higher than that on Mo 2 C(001), and the activation energies of the elementary reactions involved in stepwise hydrogenation of acrolein on Pt/Mo 2 C(001) are lower than those on Mo 2 C(001). Moreover, Pt/Mo 2 C(001) exhibits higher selectivity for C=O bond hydrogenation than Mo 2 C(001) and produces more allyl alcohol.