scholarly journals Identification, Evolution, Expression, and Docking Studies of Fatty Acid Desaturase Genes in Wheat (Triticum aestivum L.)

2020 ◽  
Author(s):  
Zahra Hajiahmadi ◽  
Amin Abedi ◽  
Hui Wei ◽  
Weibo Sun ◽  
Honghua Ruan ◽  
...  

Abstract Backgrounds: Fatty acid desaturases (FADs) introduce a double bond into the fatty acids acyl chain resulting in unsaturated fatty acids that have essential roles in plant development and response to biotic and abiotic stresses. Wheat germ oil, one of the important by-products of wheat, can be a good alternative for edible oils with clinical advantages due to the high amount of unsaturated fatty acids. Therefore, we performed a genome-wide analysis of the wheat FAD gene family (TaFADs).Results: 68 FAD genes were identified from the wheat genome. Based on the phylogenetic analysis, wheat FADs clustered into five subfamilies, including FAB2, FAD2/FAD6, FAD4, DES/SLD, and FAD3/FAD7/FAD8. The TaFADs were distributed on chromosomes 2A-7B with 0 to 10 introns. The Ka/Ks ratio was less than one for most of the duplicated pair genes revealed that the function of the genes had been maintained during the evolution. Several cis-acting elements related to hormones and stresses in the TaFADs promoters indicated the role of these genes in plant development and responses to environmental stresses. Likewise, 72 SSRs and 91 miRNAs in 36 and 47 TaFADs have been identified. According to RNA-seq data analysis, the highest expression in all developmental stages and tissues was related to TaFAB2.5, TaFAB2.12, TaFAB2.15, TaFAB2.17, TaFAB2.20, TaFAD2.1, TaFAD2.6, and TaFAD2.8 genes while the highest expression in response to temperature stress was related to TaFAD2.6, TaFAD2.8, TaFAB2.15, TaFAB2.17, and TaFAB2.20. Furthermore, docking simulations revealed several residues in the active site of TaFAD2.6 and TaFAD2.8 in close contact with the docked oleic acid that could be useful in future site-directed mutagenesis studies to increase the catalytic efficiency of them and subsequently improve agronomic quality and tolerance of wheat against environmental stresses. Conclusions: This study provides comprehensive information that can lead to the detection of candidate genes for wheat genetic modification.

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Zahra Hajiahmadi ◽  
Amin Abedi ◽  
Hui Wei ◽  
Weibo Sun ◽  
Honghua Ruan ◽  
...  

Abstract Backgrounds Fatty acid desaturases (FADs) introduce a double bond into the fatty acids acyl chain resulting in unsaturated fatty acids that have essential roles in plant development and response to biotic and abiotic stresses. Wheat germ oil, one of the important by-products of wheat, can be a good alternative for edible oils with clinical advantages due to the high amount of unsaturated fatty acids. Therefore, we performed a genome-wide analysis of the wheat FAD gene family (TaFADs). Results 68 FAD genes were identified from the wheat genome. Based on the phylogenetic analysis, wheat FADs clustered into five subfamilies, including FAB2, FAD2/FAD6, FAD4, DES/SLD, and FAD3/FAD7/FAD8. The TaFADs were distributed on chromosomes 2A-7B with 0 to 10 introns. The Ka/Ks ratio was less than one for most of the duplicated pair genes revealed that the function of the genes had been maintained during the evolution. Several cis-acting elements related to hormones and stresses in the TaFADs promoters indicated the role of these genes in plant development and responses to environmental stresses. Likewise, 72 SSRs and 91 miRNAs in 36 and 47 TaFADs have been identified. According to RNA-seq data analysis, the highest expression in all developmental stages and tissues was related to TaFAB2.5, TaFAB2.12, TaFAB2.15, TaFAB2.17, TaFAB2.20, TaFAD2.1, TaFAD2.6, and TaFAD2.8 genes while the highest expression in response to temperature stress was related to TaFAD2.6, TaFAD2.8, TaFAB2.15, TaFAB2.17, and TaFAB2.20. Furthermore, docking simulations revealed several residues in the active site of TaFAD2.6 and TaFAD2.8 in close contact with the docked oleic acid that could be useful in future site-directed mutagenesis studies to increase the catalytic efficiency of them and subsequently improve agronomic quality and tolerance of wheat against environmental stresses. Conclusions This study provides comprehensive information that can lead to the detection of candidate genes for wheat genetic modification.


2020 ◽  
Author(s):  
Zahra Hajiahmadi ◽  
Amin Abedi ◽  
Hui Wei ◽  
Weibo Sun ◽  
Honghua Ruan ◽  
...  

Abstract Backgrounds: Fatty acid desaturases (FADs) introduce a double bond into the fatty acids acyl chain resulting in unsaturated fatty acids that have essential roles in plant development and response to biotic and abiotic stresses. Wheat germ oil, one of the important by-products of wheat, can be a good alternative for edible oils with clinical advantages due to the high amount of unsaturated fatty acids. Therefore, we performed a genome-wide analysis of the wheat FAD gene family (TaFADs).Results: 68 FAD genes were identified from the wheat genome. Based on the phylogenetic analysis, wheat FADs clustered into five subfamilies, including FAB2, FAD2/FAD6, FAD4, DES/SLD, and FAD3/FAD7/FAD8. The TaFADs were distributed on chromosomes 2A-7B with 0 to 10 introns. The Ka/Ks ratio was less than one for most of the duplicated pair genes revealed that the function of the genes had been maintained during the evolution. Several cis-acting elements related to hormones and stresses in the TaFADs promoters indicated the role of these genes in plant development and responses to environmental stresses. Likewise, 72 SSRs and 91 miRNAs in 36 and 47 TaFADs have been identified. According to RNA-seq data analysis, the highest expression in all developmental stages and tissues was related to TaFAB2.5, TaFAB2.12, TaFAB2.15, TaFAB2.17, TaFAB2.20, TaFAD2.1, TaFAD2.6, and TaFAD2.8 genes while the highest expression in response to temperature stress was related to TaFAD2.6, TaFAD2.8, TaFAB2.15, TaFAB2.17, and TaFAB2.20. Furthermore, docking simulations revealed several residues in the active site of TaFAD2.6 and TaFAD2.8 in close contact with the docked oleic acid that could be useful in future site-directed mutagenesis studies to increase the catalytic efficiency of them and subsequently improve agronomic quality and tolerance of wheat against environmental stresses. Conclusions: This study provides comprehensive information that can lead to the detection of candidate genes for wheat genetic modification.


2020 ◽  
Author(s):  
Zahra Hajiahmadi ◽  
Amin Abedi ◽  
Hui Wei ◽  
Weibo Sun ◽  
Honghua Ruan ◽  
...  

Abstract Backgrounds: Fatty acid desaturases (FADs) introduce a double bond into the fatty acids acyl chain resulting in unsaturated fatty acids which have important roles in plant development and response to biotic and abiotic stresses. Wheat germ oil, one of the important by-products of wheat, can be a good alternative for edible oils with clinical advantages due to the high amount of unsaturated fatty acids. Therefore, genome-wide analysis of wheat FAD gene family (TaFADs) has been performed.Results: 68 FAD genes were identified from the wheat genome. Based on the phylogenetic analysis, wheat FADs clustered into five subfamilies, including FAB2, FAD2/FAD6, FAD4, DES/SLD, and FAD3/FAD7/FAD8. The TaFADs were distributed on chromosomes 2A-7B with 0 to 10 introns. The Ka/Ks ratio was less than one for most of the duplicated pair genes revealed that the function of the genes has been maintained during the evolution. Several cis-acting elements related to hormones and stresses in the TaFADs promoters indicated the role of these genes in plant development and responses to environmental stresses. Likewise, 72 SSRs and 91 miRNAs in 36 and 47 TaFADs have been identified. According to RNA-seq data analysis, the highest expression in all developmental stages and tissues was related to TaFAB2.5, TaFAB2.12, TaFAB2.15, TaFAB2.17, TaFAB2.20, TaFAD2.1, TaFAD2.6, and TaFAD2.8 genes while the highest expression in response to temperature stress was related to TaFAD2.6, TaFAD2.8, TaFAB2.15, TaFAB2.17, and TaFAB2.20. Furthermore, docking simulations revealed several residues in the active site of TaFAD2.6 and TaFAD2.8 in close contact with the docked oleic acid that could be useful in future site-directed mutagenesis studies to increase the catalytic efficiency of them and subsequently improve agronomic quality and tolerance of wheat against environmental stresses. Conclusions:This study provides comprehensive information that can lead to the detection of candidate genes for wheat genetic modification.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009930
Author(s):  
Xi Chen ◽  
Wei Ping Teoh ◽  
Madison R. Stock ◽  
Zachary J. Resko ◽  
Francis Alonzo

Fatty acid-derived acyl chains of phospholipids and lipoproteins are central to bacterial membrane fluidity and lipoprotein function. Though it can incorporate exogenous unsaturated fatty acids (UFA), Staphylococcus aureus synthesizes branched chain fatty acids (BCFA), not UFA, to modulate or increase membrane fluidity. However, both endogenous BCFA and exogenous UFA can be attached to bacterial lipoproteins. Furthermore, S. aureus membrane lipid content varies based upon the amount of exogenous lipid in the environment. Thus far, the relevance of acyl chain diversity within the S. aureus cell envelope is limited to the observation that attachment of UFA to lipoproteins enhances cytokine secretion by cell lines in a TLR2-dependent manner. Here, we leveraged a BCFA auxotroph of S. aureus and determined that driving UFA incorporation disrupted infection dynamics and increased cytokine production in the liver during systemic infection of mice. In contrast, infection of TLR2-deficient mice restored inflammatory cytokines and bacterial burden to wildtype levels, linking the shift in acyl chain composition toward UFA to detrimental immune activation in vivo. In in vitro studies, bacterial lipoproteins isolated from UFA-supplemented cultures were resistant to lipase-mediated ester hydrolysis and exhibited heightened TLR2-dependent innate cell activation, whereas lipoproteins with BCFA esters were completely inactivated after lipase treatment. These results suggest that de novo synthesis of BCFA reduces lipoprotein-mediated TLR2 activation and improves lipase-mediated hydrolysis making it an important determinant of innate immunity. Overall, this study highlights the potential relevance of cell envelope acyl chain repertoire in infection dynamics of bacterial pathogens.


1985 ◽  
Vol 101 (4) ◽  
pp. 1591-1598 ◽  
Author(s):  
D S Roos ◽  
P W Choppin

The preceding communication (Roos, D.S. and P.W. Choppin, 1985, J. Cell Biol. 101:1578-1590) described the lipid composition of a series of mouse fibroblast cell lines which vary in susceptibility to the fusogenic effects of polyethylene glycol (PEG). Two alterations in lipid content were found to be directly correlated with resistance to PEG-induced cell fusion: increases in fatty acyl chain saturation, and the elevation of neutral glycerides, including an unusual ether-linked compound. In this study, we have probed the association between lipid composition and cell fusion through the use of fatty acid supplements to the cellular growth medium, and show that the fusibility of cells can be controlled by altering their acyl chain composition. The parental Clone 1D cells contain moderately unsaturated fatty acids with a ratio of saturates to polyunsaturates (S/P) approximately 1 and fuse virtually to completion following a standard PEG treatment. By contrast, the lipids of a highly fusion-resistant mutant cell line, F40, are highly saturated (S/P approximately 4). When the S/P ratio of Clone 1D cells was increased to approximate that normally found in F40 cells by growth in the presence of high concentrations of saturated fatty acids, they became highly resistant to PEG. Reduction of the S/P ratio of F40 cells by growth in cis-polyunsaturated fatty acids rendered them susceptible to fusion. Cell lines F8, F16, etc., which are normally intermediate between Clone 1D and F40 in both lipid composition and fusion response, can be altered in either direction (towards either increased or decreased susceptibility to fusion) by the addition of appropriate fatty acids to the growth medium. Although trans-unsaturated fatty acids have phase-transition temperatures roughly similar to saturated compounds, and might therefore be expected to affect membrane fluidity in a similar manner, trans-unsaturated fatty acids exerted the same effect as cis-unsaturates on the control of PEG-induced cell fusion. This observation suggests that the control of cell fusion by alteration of fatty acid content is not due to changes in membrane fluidity, and thus that the fatty acids are involved in some other way in the modulation of cell fusion.


2000 ◽  
Vol 182 (13) ◽  
pp. 3655-3660 ◽  
Author(s):  
Roger Schneiter ◽  
Verena Tatzer ◽  
Gabriela Gogg ◽  
Erich Leitner ◽  
Sepp Dieter Kohlwein

ABSTRACT Saccharomyces cerevisiae medium-chain acyl elongase (ELO1) mutants have previously been isolated in screens for fatty acid synthetase (FAS) mutants that fail to grow on myristic acid (C14:0)-supplemented media. Here we report that wild-type cells cultivated in myristoleic acid (C14:1Δ9)-supplemented media synthesized a novel unsaturated fatty acid that was identified as C16:1Δ11 fatty acid by gas chromatography-mass spectroscopy. Synthesis of C16:1Δ11 was dependent on a functional ELO1 gene, indicating that Elo1p catalyzes carboxy-terminal elongation of unsaturated fatty acids (α-elongation). In wild-type cells, the C16:1Δ11elongation product accounted for approximately 12% of the total fatty acids. This increased to 18% in cells that lacked a functional acyl chain desaturase (ole1Δ mutants) and hence were fully dependent on uptake and elongation of C14:1. The observation thatole1Δ mutant cells grew almost like wild type on medium supplemented with C14:1 indicated that uptake and elongation of unsaturated fatty acids were efficient. Interestingly, wild-type cells supplemented with either C14:1 or C16:1 fatty acids displayed dramatic alterations in their phospholipid composition, suggesting that the availability of acyl chains is a dominant determinant of the phospholipid class composition of cellular membranes. In particular, the relative content of the two major phospholipid classes, phosphatidylethanolamine and phosphatidylcholine, was strongly dependent on the chain length of the supplemented fatty acid. Moreover, analysis of the acyl chain composition of individual phospholipid classes in cells supplemented with C14:1 revealed that the relative degree of acyl chain saturation characteristic for each phospholipid class appeared to be conserved, despite the gross alteration in the cellular acyl chain pool. Comparison of the distribution of fatty acids that were taken up and elongated (C16:1Δ11) to those that were endogenously synthesized by fatty acid synthetase and then desaturated by Ole1p (C16:1Δ9) in individual phospholipid classes finally suggested the presence of two different pools of diacylglycerol species. These results will be discussed in terms of biosynthesis of different phospholipid classes via either the de novo or the Kennedy pathway.


2018 ◽  
Vol 111 (1) ◽  
pp. 73 ◽  
Author(s):  
Tayebeh SHOJA ◽  
Majid MAJIDIAN ◽  
Mohammad RABIEE

<p>A field experiment was conducted to study the effects of elements zinc (Zn), boron (B) and sulfur (S) and their interactions on quantitative and qualitative agronomic characteristics of rapeseed. Minimum grain oil and seed yield were obtained from control treatments and the highest seed yield were obtained from S + B + Zn treatments. The maximum of oleic acid (229.6 mg g<sup>-1</sup>) and linolenic acid (27.14 mg g<sup>-1</sup>) were obtained from B + Zn + S treatment. Maximum of linoleic acid (55.55 mg g<sup>-1</sup>) were obtained from B + Zn treatment. However, the highest superoxide dismutase activity was obtained from S + B + Zn treatments 10.24 unit mg<sup>-1</sup> and the highest peroxidase activity were obtained from Zn treatment 0.87 µmol g<sup>-1</sup> FM min. Regard to this experiment results, application of B, S and Zn fertilizers with NPK fertilizer can help to increase the yield and yield components in rapeseed. Also fatty acids composition of rapeseed are influenced by nutrients and since quality of edible oils depends on unsaturated fatty acids, especially linoleic and linolenic acids and these acids are essential fatty acids for the human body that must be supplied through diet. Therefore this research showed that we are not only able only to increase oil yield but also oil quality with desired fatty acid composition.</p>


1998 ◽  
Vol 11 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Otto Geiger ◽  
John Glushka ◽  
Ben J. J. Lugtenberg ◽  
Herman P. Spaink ◽  
Jane E. Thomas-Oates

In Rhizobium leguminosarum, the nodABC and nodFEL operons are involved in the production of lipo-chitin oligosaccharide signals that mediate host specificity. A nodFE-determined, highly unsaturated C18:4 fatty acid (trans-2, trans-4, trans-6, cis-11-octadecatetraenoic acid) is essential for the ability of the signals to induce nodule meristems and pre-infection thread structures on the host plant Vicia sativa. Of the nod genes, induction of only nodFE is sufficient to modify fatty acid biosynthesis to yield trans-2, trans-4, trans-6, cis-11-octadeca-tetraenoic acid, with an absorbance maximum of 303 nm. This unusual C18:4 fatty acid is not only found in the lipo-chitin oligosaccharides but is also associated with the phospholipids (O. Geiger, J. E. Thomas-Oates, J. Glushka, H. P. Spaink, and B. J. J. Lugtenberg, 1994, J. Biol. Chem. 269:11090-11097). Here we report that the phospholipids can contain other nodFE-derived fatty acids, a C18:3 trans-4, trans-6, cis-11-octadecatrienoic acid that has a characteristic absorption maximum at 225 nm, and a C18:2 octadecadienoic acid. Neither this C18:3 nor this C18:2 fatty acid has to date been observed attached to lipo-chitin oligosaccharides, suggesting that an as yet unknown acyl transferase (presumably NodA), responsible for the transfer of the fatty acyl chain to the glycan backbone of the lipo-chitin oligosaccharides, does not transfer all fatty acids synthesized by the action of NodFE to the lipo-chitin oligosaccharides. Rather, it must have a preference for α-β unsaturated fatty acids during transfer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Mengli Wang ◽  
Lexuan Gao ◽  
Gengyun Li ◽  
Chengchuan Zhou ◽  
Jinjing Jian ◽  
...  

Seed oils are of great economic importance both for human consumption and industrial applications. The nutritional quality and industrial value of seed oils are mostly determined by their fatty acid profiles, especially the relative proportions of unsaturated fatty acids. Tree peony seed oils have recently been recognized as novel edible oils enriched in α-linolenic acid (ALA). However, congeneric species, such as Paeonia ostii and P. ludlowii, showed marked variation in the relative proportions of different unsaturated fatty acids. By comparing the dynamics of fatty acid accumulation and the time-course gene expression patterns between P. ostii and P. ludlowii, we identified genes that were differentially expressed between two species in developing seeds, and showed congruent patterns of variation between expression levels and phenotypes. In addition to the well-known desaturase and acyltransferase genes associated with fatty acid desaturation, among them were some genes that were conservatively co-expressed with the desaturation pathway genes across phylogenetically distant ALA-rich species, including Camelina sativa and Perilla frutescens. Go enrichment analysis revealed that these genes were mainly involved in transcriptional regulation, protein post-translational modification and hormone biosynthesis and response, suggesting that the fatty acid synthesis and desaturation pathway might be subject to multiple levels of regulation.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


Sign in / Sign up

Export Citation Format

Share Document