scholarly journals Assessment of Potential Heavy Metal Contamination in the Agricultural Soils Based on Various Improved Evaluation Methods in Beijing, China

Author(s):  
Rui Chen ◽  
Xuying Cai ◽  
Guoyu Ding ◽  
Fumin Ren ◽  
Qi Wang ◽  
...  

Abstract The evaluation of the soil contaminated by heavy metals can help to judge whether the soil meets the standard and whether the pollution will threaten human health and the ecological environment. In this study, the farmland soil from eight districts in Beijing was used as the research object, and the concentration of heavy metal elements, Pb, As and Cd in the soils and agricultural products were analyzed. The analysis results showed that: (1) The evaluation based on the improved Hakanson method suggested that the crops exhibit a significantly higher ability to absorb Cd than to absorb Pb and As. Pb, As and Cd are all at normal level of ecological risk; among them, Cd is mainly in a moderate ecological risk, without strong ecological risk. (2) Based on the Improved analytic hierarchy process(AHP) of evaluation, 0.2317 is the average value of the integrated index of heavy metal pollution of soil in the study area, which is a mild level of pollution. (3) Through the calculation of various parameters in the Influence index of comprehensive quality(IICQ) of soil and agricultural products, it was found that 0<IICQS<1, suggesting that the environmental quality of soil is at a clean level. In summary, the pollution of heavy metals Pb, As and Cd in the farmland soils and crops in the eight districts of Beijing, including Fangshan, Daxing, Shunyi, and Shijingshan is at a low level, and no significant impact has been brought to the surrounding environment.

Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


2013 ◽  
Vol 726-731 ◽  
pp. 296-300
Author(s):  
Zhi Gang Chen ◽  
An Ping Wei ◽  
Xiao Hong Zhou

The purpose of this paper is to study the speciation and contents of two types of heavy metals (Cd and Hg) in the sediments in Power Bridge (D1) and Nanshui Bridge (N2) in the middle part of the Ancient Canal in Zhenjiang. The relationship between the speciation of these heavy metals and their environmental factors were described. Morerover, the ecological hazard and trace to the source of these two types of heavy metals was also determined preliminarily. The results showed that (1) the main heavy metal contamination in the sediments of Power Bridge and Nanshui Bridge is Cd, and the average value is 20 mg/Kg, 17 mg/Kg, respectively, which were higher than environmental background value;(2) The peak value of Hg and Cd were near equilibrium in the 0.1-0.2m depth of Sediments; (3) Calculate the individual potential ecological risk index in the sediments of heavy metal element of two sample points both quantity of contents are Cd>Hg. And visible ecological threat of heavy metals were from Cd. After removing the Cd value, the RI value showed that ecological harm index basically below mild ecological harm degree.


Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 934
Author(s):  
Li Tan ◽  
Bin Yang ◽  
Zhibin Xue ◽  
Zhanqi Wang

The Middle Route Project of China’s South-to-North Water Diversion Project (SNWDP) is a national-level water source protection zone and the ecological safety of its water quality and surrounding soil is of great significance. In this study, heavy metals in the surface water and topsoil in the core water source area were quantitatively analyzed using a geographic information system (GIS) and geostatistical techniques combined with environmental pollution and ecological risk assessment models to determine their environmental contamination levels, ecological risk levels, and spatial distribution patterns. Cd was identified as an essential factor responsible for the overall slight heavy metal pollution in the topsoil layer. Heavy metal contamination in surface water was primarily driven by alert-level concentrations of Hg and was consistently distributed in areas with high concentrations of Hg in the topsoil. Applying the potential ecological risk index (RI) revealed two key results. First, surface water showed no ecological risk. The concentrations of heavy metals in surface water met the goals set by relevant authorities in China. Second, overall, the topsoil was at low ecological risk, with a spatial pattern primarily influenced by Cd and Hg. Some heavy metals might have similar pollution sources and originate from human activities such as industrial activities, mining and smelting, and pesticide and chemical fertilizer applications. The study is important for improving the soil and water ecology in the reservoir area and ensuring the northward diversion of high-quality water. In addition, it provides a sound basis for making decisions about local heavy-metal remediation and treatment projects.


2010 ◽  
Vol 46 (No. 4) ◽  
pp. 159-170 ◽  
Author(s):  
H.M. El-Sharabasy ◽  
A. Ibrahim

The continued use of waste water for irrigation of agricultural fields in Egypt may lead to accumulation of heavy metals in soils and adverse effects on soil-living communities. We investigated responses of oribatid communities to heavy metal contamination in mango plantations irrigated by the Ismailia canal in the Suez region. Mean concentrations of heavy metals determined in irrigation water were considerably above the recommended levels. Concentrations of metals in agricultural soil were however below the permissible levels. A comparison with concentrations of a typical uncontaminated soil in this area revealed that the Ismailia water canal used for irrigation of agricultural land has elevated levels of heavy metals. The results of our ecological survey showed that the abundance and structure of the soil oribatid communities were not influenced by levels of heavy metals in the soil. We also showed that the diversity index can be a valuable tool for assessing the possible impact of pollutants on different species of oribatid mites. The oribatid species appeared to be accumulating different amounts of heavy metals when characterised by their bioconcentration factors. Most species were poor zinc accumulators. The accumulation of heavy metals in the body of oribatids was not strictly determined by their body size or by the trophic level. In conclusion, our study showed that mango plantations impacted by waste water from the Ismailia canal are accumulating heavy metals in their soils above the background concentrations, but ecological effects on soil-living communities are not apparent yet.


2014 ◽  
Vol 651-653 ◽  
pp. 1402-1409
Author(s):  
Gui Ping Xu ◽  
Xiao Fei Wang ◽  
Li Jun Chen

Concentrations of heavy metals in sugarcane soil of Guangxi were determined and the potential ecological risk index was used simultaneously to evaluate the extent of heavy metals enrichment contamination. Results showed that the pollution extent of heavy metals in sugarcane soil by potential ecological risk followed the order: Cd>Pb>Cu>Zn, Cu and Zn were slightly polluted, with small potential ecological harm, while Pb and Cd were above moderately polluted, with heavy potential ecological harm. Principal component analysis was applied to estimate the sources of heavy metals contamination, the results indicated that the first two components accounted for 61.016% and 26.920% of the total variance respectively, 4 kinds of heavy metal elements had similar sources, tailing dam lead-zinc concentrator upstream along the coast was the main sources of heavy metal contamination.


2010 ◽  
Vol 61 (12) ◽  
pp. 3156-3161 ◽  
Author(s):  
M. I. Kabir ◽  
H. Lee ◽  
G. Kim ◽  
T. Jun

Topsoils, mainly from crop fields, orchards, forests, and barns around the Pyeongchang River, were collected to investigate their heavy metal concentrations. Pollution load index, ecological risk index, and enrichment factor were applied to assess levels of heavy metal contamination for topsoils. The concentrations of cadmium (Cd) (1.7 mg/kg) and chromium (Cr) (4.1 mg/kg) exceeded the troublesome level in one site, whereas zinc (Zn) (396.7 to 711.1 mg/kg) and nickel (Ni) (40.1 to 95.3 mg/kg) in several topsoils exceeded the troublesome to countermeasure levels, according to soil contamination standards for the study areas. A significant risk of contamination was observed for mercury (Hg) by all indices, although the concentration in most of the topsoils was below the guideline. As expected, a positive linear correlation was observed for the values of pollution load index and ecological risk index, demonstrating lower heavy metal contamination in upstream areas compared to those downstream. High to extremely high ecological risk was observed in several samples for Zn and Ni, while all of the soils were unpolluted to slightly polluted, according to the pollution load index. A baseline study was not performed earlier for these sites, so these assessed values of heavy metals should be used as reference values for further assessment.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Pingguo Yang ◽  
Miao Yang ◽  
Renzhao Mao ◽  
Hongbo Shao

The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and Cd, which indicates that Cu, Zn, and Cd are associated with and controlled by anthropic activities. The average value of heavy metal is lower than the second grade standard values of soil environmental quality standards in China. Single pollution index is lower than 1, and the Nemerow integrated pollution index is 0.305, which means that study area has not been polluted. The semivariograms of soil heavy metal single pollution index fitted spherical and exponential models. The variable ratio of single pollution index showed moderately spatial dependence. Heavy metal contents showed relative safety in the study area.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Sharhabil Musa Yahaya ◽  
Fatima Abubakar ◽  
Nafiu Abdu

AbstractThe incidence of heavy metal contamination in Zamfara State, northern Nigeria, due to artisanal mining in some villages has resulted in the pollution of a vast area of land and water. This study evaluated the extent of environmental risks caused by heavy metals. It involved five (5) villages (Bagega, Dareta, Sunke, Tunga, and Abare) where mining activities were taking place and Anka town with no record of mining activities served as control. In each of the five villages, three sites (3) were identified as a mining site, processing site, and village making a total of sixteen (16) sites. Bulked soil samples were collected in triplicate and analyzed for iron, lead, cadmium, chromium, zinc, and nickel using flame atomic absorption spectrophotometry. Measured concentrations of the heavy metals in soils were then used to calculate the pollution and ecological risk pose by heavy metals. Their concentrations were in the order Fe > Pb > Cr > Zn > Cd > Ni, with Pb and Cd having a concentration higher than permissible levels for soils and accounted for 98.64% of the total potential ecological risk. Also, all the different pollution indices examined showed that all the sites were polluted with Cd, and all the processing sites were polluted with Pb. This reveals that processing sites pose more risk to heavy metal contamination. Correlation analysis showed a highly significant (p < 0.001) positive correlation between Pb and Zn, Cr and Ni, and a significant (p < 0.01) positive correlation between Fe and Pb, Zn and Cr. The principal component analysis suggested that Pb, Zn, Cr, and Ni likely originated from the same source, i.e., mining activities, and Fe and Cd originated from the abundant parent material in the study area.


Author(s):  
Noa Tang Sylvie Désirée ◽  
Ekoa Bessa Armel Zacharie ◽  
Tchakam Kamtchueng Brice ◽  
Wongan Kouonchie Sorel Ange ◽  
Etame Jacques ◽  
...  

Examination of heavy metals (Cr, Cu, Zn, Pb, Hg, Cd and Ni) in overlying water and sediments was conducted in Lake Nkozoa, in a peripheral area of Yaoundé characterized by a high population density and rapid economic development in Cameroon. Sediment samples were collected at the entrance and near the center of the lake, using a raft and polyvinyl chloride (PVC) pipes. They were subjected to water quality parameters, heavy metals comparisons and calculations of pollution indices and ecological risks followed by statistical analysis in order to identify and estimate the sources of metal contamination in overlying water and sediments of the Nkozoa Lake. The physico-chemical parameters of water show that the pH (5 < pH < 6), total dissolved solids (TDS~130 g/L) and conductivity (EC~194.8 µs/cm) are below the recommendations of the WHO. The average heavy metal concentrations in sediments, except Cd, are lower than the upper continental crust (UCC) and several environmental contamination monitoring parameters, such as threshold effect level (TEL), probable effect level (PEL), and severe effect level (SEL). The sediment samples show a low heavy metal contamination degree (class 0) and low potential ecological risk (PER) level, except for Cd and Hg which have high contamination degree (class 1 to 6) and moderate PER. Matrix correlation shows that some parameters like pH, EC, Cr and TDS, Cu, Hg in water have perfect positive correlations (r = 1.00) suggesting common sources of contamination. Cluster analyses coupled with matrix data for sediments revealed that Cd is the most contaminant elements derived from anthropogenic sources.


Sign in / Sign up

Export Citation Format

Share Document