scholarly journals Influence of Woodsmoke Exposure on Molecular Mechanisms Underlying Alzheimer’s Disease: Existing Literature and Gaps in Our Understanding

2020 ◽  
Vol 13 ◽  
pp. 251686572095487
Author(s):  
Adam Schuller ◽  
Luke Montrose

Woodsmoke poses a significant health risk as a growing component of ambient air pollution in the United States. While there is a long history of association between woodsmoke exposure and diseases of the respiratory, circulatory, and cardiovascular systems, recent evidence has linked woodsmoke exposure to cognitive dysfunction, including Alzheimer’s disease dementia. Alzheimer’s disease is a progressive neurodegenerative disorder with largely idiopathic origins and no known cure. Here, we explore the growing body of literature which relates woodsmoke-generated and ambient air pollution particulate matter exposure to Alzheimer’s disease (AD) onset or exacerbation, in the context of an inflammation-centric view of AD. Epigenetic modifications, specifically changes in DNA methylation patterns, are well documented following woodsmoke exposure and have been shown to influence disease-favoring inflammatory cascades, induce oxidative stress, and modulate the immune response in vitro, in vivo, and in humans following exposure to air pollution. Though the current status of the literature does not allow us to draw definitive conclusions linking these events, this review highlights the need for additional work to fill gaps in our understanding of the directionality, causality, and susceptibility throughout the life course.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Qiang Su ◽  
Tian Li ◽  
Pei-Feng He ◽  
Xue-Chun Lu ◽  
Qi Yu ◽  
...  

Abstract Background Alzheimer’s disease (AD) is an intractable neurodegenerative disorder in the elderly population, currently lacking a cure. Trichostatin A (TSA), a histone deacetylase inhibitor, showed some neuroprotective roles, but its pathology-improvement effects in AD are still uncertain, and the underlying mechanisms remain to be elucidated. The present study aims to examine the anti-AD effects of TSA, particularly investigating its underlying cellular and molecular mechanisms. Methods Novel object recognition and Morris water maze tests were used to evaluate the memory-ameliorating effects of TSA in APP/PS1 transgenic mice. Immunofluorescence, Western blotting, Simoa assay, and transmission electron microscopy were utilized to examine the pathology-improvement effects of TSA. Microglial activity was assessed by Western blotting and transwell migration assay. Protein-protein interactions were analyzed by co-immunoprecipitation and LC-MS/MS. Results TSA treatment not only reduced amyloid β (Aβ) plaques and soluble Aβ oligomers in the brain, but also effectively improved learning and memory behaviors of APP/PS1 mice. In vitro study suggested that the improvement of Aβ pathology by TSA was attributed to the enhancement of Aβ clearance, mainly by the phagocytosis of microglia, and the endocytosis and transport of microvascular endothelial cells. Notably, a meaningful discovery in the study was that TSA dramatically upregulated the expression level of albumin in cell culture, by which TSA inhibited Aβ aggregation and promoted the phagocytosis of Aβ oligomers. Conclusions These findings provide a new insight into the pathogenesis of AD and suggest TSA as a novel promising candidate for the AD treatment.


Author(s):  
Pengfei Fu ◽  
Ken Kin Lam Yung

Background: Ambient air pollution has been associated with Alzheimer’s disease (AD) in the elderly. However, its effects on AD have not been meta-analyzed comprehensively. Objective: We conducted a systematic review and meta-analysis to assess the associations between air pollution and AD incidence. Methods: We searched PubMed and Web of Science for indexed publications up to March 2020. Odds risk (OR) and confidence intervals (CI) were estimated for particulate matter (PM)10 (PM10), PM2.5, ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). The subgroup analysis was conducted based on the pollution levels. Results: Nine studies were included in the meta-analysis and review. The OR per 10 μg/m3 increase of PM2.5 was 1.95 (95% CI: 0.88–4.30). The corresponding values per 10 μg/m3 increment of other pollutants were 1.03 (95% CI: 0.68–1.57) for O3, 1.00 (95% CI: 0.89–1.13) for NO2, and 0.95 (95% CI: 0.91–0.99) for PM10 (only one study), respectively. Overall OR of the five air pollutants above with AD was 1.32 (95% CI: 1.09–1.61), suggesting a positive association between ambient air pollution and AD incidence. The sub-analysis indicated that the OR (2.20) in heavily polluted regions was notably higher than that in lightly polluted regions (1.06). Although AD risk rate data related to SO2 or CO exposure are still limited, the epidemiologic and toxicological evidence indicated that higher concentration of SO2 or CO exposure increased risks of dementia, implying that SO2 or CO might have a potential impact on AD. Conclusion: Air pollution exposure may exacerbate AD development.


2020 ◽  
Vol 77 (2) ◽  
pp. 701-714
Author(s):  
Pengfei Fu ◽  
Ken Kin Lam Yung

Background: Ambient air pollution has been associated with Alzheimer’s disease (AD) in the elderly. However, its effects on AD have not been meta-analyzed comprehensively. Objective: We conducted a systematic review and meta-analysis to assess the associations between air pollution and AD incidence. Methods: We searched PubMed and Web of Science for indexed publications up to March 2020. Odds risk (OR) and confidence intervals (CI) were estimated for particulate matter (PM)10 (PM10), PM2.5, ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO). The subgroup analysis was conducted based on the pollution levels. Results: Nine studies were included in the meta-analysis and review. The OR per 10μg/m3 increase of PM2.5 was 1.95 (95% CI: 0.88–4.30). The corresponding values per 10μg/m3 increment of other pollutants were 1.03 (95% CI: 0.68–1.57) for O3, 1.00 (95% CI: 0.89–1.13) for NO2, and 0.95 (95% CI: 0.91–0.99) for PM10 (only one study), respectively. Overall OR of the five air pollutants above with AD was 1.32 (95% CI: 1.09–1.61), suggesting a positive association between ambient air pollution and AD incidence. The sub-analysis indicated that the OR (2.20) in heavily polluted regions was notably higher than that in lightly polluted regions (1.06). Although AD risk rate data related to SO2 or CO exposure are still limited, the epidemiologic and toxicological evidence indicated that higher concentration of SO2 or CO exposure increased risks of dementia, implying that SO2 or CO might have a potential impact on AD. Conclusion: Air pollution exposure may exacerbate AD development.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Zhenjiang Li ◽  
Stefanie Ebelt ◽  
Marla Gearing ◽  
Aliza Wingo ◽  
Thomas Wingo ◽  
...  

2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


2020 ◽  
Vol 26 ◽  
Author(s):  
Nimra Javaid ◽  
Muhammad Ajmal Shah ◽  
Azhar Rasul ◽  
Zunera Chauhdary ◽  
Uzma Saleem ◽  
...  

: Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead towards neuronal cell death. Alzheimer’s disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset yet later on it worsens. The documented evidence of AD neuropathology manifested the neuro-inflammation, increased reactive oxygen, nitrogen species and decreased antioxidant protective process; mitochondrial dysfunction as well as increased level of acetylcholinesterase activity. Moreover, enhanced action of proteins leads towards neural apoptosis which have a vital role in the degeneration of neurons. The inability of commercial therapeutic options to treat AD with targeting single mechanism leads the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid, latest studies expressed that ellagic acid can initiate the numerous cell signaling transmission and decrease the progression of disorders, involved in the degeneration of neurons. The influential property of ellagic acid to protect the neurons in neurodegenerative disorders is due to its antioxidant effect, iron chelating and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mode of action of ellagic acid against neurodegeneration.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2021 ◽  
Vol 10 (8) ◽  
pp. 1555
Author(s):  
Ágoston Patthy ◽  
János Murai ◽  
János Hanics ◽  
Anna Pintér ◽  
Péter Zahola ◽  
...  

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.


2018 ◽  
Vol 15 (10) ◽  
pp. 938-950 ◽  
Author(s):  
Martina Zverova ◽  
Eva Kitzlerova ◽  
Zdenek Fisar ◽  
Roman Jirak ◽  
Jana Hroudova ◽  
...  

Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with a complex pathogenesis and a common occurrence of comorbid diseases such as depression. It is accepted that the presence of the ε4 allele of the gene that encodes apolipoprotein E (APOE) is the strongest genetic risk factor for the development of sporadic AD. Melatonin, cortisol, homocysteine, and prolactin are presumed to be risk factors or biomarkers for stress- and age-related disorders. Objective: The interplay between the APOE genotype and plasma biomarkers was examined in patients with AD presenting with or without depression to contribute to understanding the interdependence of various molecular mechanisms in the pathophysiology of AD. Method: The APOE genotype and morning plasma melatonin, cortisol, homocysteine, and prolactin concentrations were measured in 85 patients with AD and 44 elderly controls. Results: A significant association between AD and the allele (ε4) or genotype (ε3/ε4 or ε4/ε4) frequencies of APOE was confirmed. Plasma homocysteine and cortisol levels were significantly increased in patients with AD compared to those in controls, independent of the presence of comorbid depressive symptoms or the severity of dementia. Significantly lower plasma melatonin concentration was found in patients with AD but not in controls, who were noncarriers of the APOE ε4 allele, regardless of the presence of depression or the severity of dementia in AD. Conclusion: Our findings indicate the existence of a little-known specific APOE-mediated mechanism that increases the plasma melatonin level in a subgroup of patients with AD who are carriers of the APOE ε4 allele.


Sign in / Sign up

Export Citation Format

Share Document