scholarly journals Inventory of landslides triggered by hurricane Matthew in Guantánamo, Cuba

Author(s):  
Yusmira Savón Vaciano ◽  
Ricardo Delgado Tellez ◽  
Enrique A. Castellanos Abella ◽  
Rafael Guardado Lacaba ◽  
Arisleidys Peña de la Cruz

Abstract An inventory of landslides triggered by Hurricane Matthew (4–5 October 2016) through the eastern region of Cuba was carried out using Sentinel 2A satellite images. The inventory was compared with the slope map generated from the digital elevation model at 25 m per pixel and with the geological map at 1: 100 000 scale. The precipitation data from the 1-hour rain gauge records of four stations of the Cuban Institute of Meteorology (INSMET) and 24-hour rain gauge records of six stations of National Institute of Hydraulic Resources (INRH) were processed and analysed during this event. In total, 237 landslides were classified into rockslides, debrisflows and topples. A wide distribution of landslides was found within the selected slope classes, depending of the landslide type. Most of the landslides were generated in green schist of volcanic and vulcanoclastic rocks and rocks of the ophiolitic complex made up of ancient remains of oceanic crust. Findings increase understanding of landslide occurrence in this area in order to update landslide hazard map and to reduce landslide risk.

Geosciences ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 131 ◽  
Author(s):  
Abhirup Dikshit ◽  
Raju Sarkar ◽  
Biswajeet Pradhan ◽  
Saroj Acharya ◽  
Abdullah M. Alamri

Landslides are one of the most destructive and most recurring natural calamities in the Himalayan region. Their occurrence leads to immense damage to infrastructure and loss of land, human lives, and livestock. One of the most affected regions is the Bhutan Himalayas, where the majority of the landslides are rainfall-induced. The present study aims to determine the hazard and risk associated with rainfall-induced landslides for the Phuentsholing region located in the southwestern part of the Bhutan Himalayas. The work involves developing a landslide risk map using hazard and vulnerability maps utilizing landslide records from 2004 to 2014. The landslide hazard map was generated by determining spatial and temporal probabilities for the study region. The spatial probability was computed by analyzing the landslide contributing factors like geology, slope, elevation, rainfall, and vegetation based on comprehensive field study and expertise about the area. The contributing factors were divided into various classes and the percentage of landslide occurrence under each class was calculated to understand its contributing significance. Thereafter, a weighted linear combination approach was used in a GIS environment to develop the spatial probability map which was multiplied with temporal probabilities based on regional rainfall thresholds already determined for the region. Consequently, vulnerability assessment was conducted using key elements at risk (population, land use/land cover, proximity to road, proximity to stream) and the weights were provided based on expert judgment and comprehensive field study. Finally, risk was determined and the various regions in the study area were categorized as high, medium, and low risk. Such a study is necessary for low-economic countries like Bhutan which suffers from unavailability of extensive data and research. The study is conducted for a specific region but can be extended to other areas around the investigated area. The tool can serve as an indicator for the civil authorities to analyze the risk posed by landslides due to the rapid infrastructure development in the region.


2020 ◽  
Vol 4 (1) ◽  
pp. 23-27
Author(s):  
R. O. E. Ulakpa ◽  
V.U.D. Okwu ◽  
K. E. Chukwu ◽  
M. O. Eyankware

Identification and mapping of landslide is essential for landslide risk and hazard assessment. This paper gives information on the uses of landsat imagery for mapping landslide areas ranging in size from safe area to highly prone areas. Landslide mitigation largely depends on the understanding of the nature of the factors namely: slope, soil type, lineament, lineament density, elevation, rainfall and vegetation. These factors have direct bearing on the occurrence of landslide. Identification of these factors is of paramount importance in setting out appropriate and strategic landslides control measures. Images for this study was downloaded by using remote sensing with landsat 8 ETM and aerial photos using ArcGIS 10.7 and Surfer 8 software, while Digital Elevation Model (DEM) and Google EarthPro TM were used to produce slope, drainage, lineament and elevation. From the processed landsat 8 imagery, landslide susceptibility map was produced, and landslide was category into various class; low, medium and high. From the study, it was observed that Enugu and Anambra state ranges from high to medium in terms of landslide susceptibility, Imo state ranges from medium to low.


2001 ◽  
Vol 34 (1) ◽  
pp. 29 ◽  
Author(s):  
Ε. ΜΑΝΟΥΤΣΟΓΛΟΥ ◽  
Ε. ΣΠΥΡΙΔΩΝΟΣ ◽  
Α. SOUJON ◽  
V. JACOBSHAGEN

The island of Crete is situated near the front of an active plate margin. Therefore, it is of great interest in the framework of the International Continental Drilling Project (I.C.D.P.). A short review of the digital modelling methods, their applications in the geosciences and the associated advantages is also presented. The digital 3-dimensional geometric model of the geological structure of the Samaria Gorge region is based on the study of the stratigraphy and the tectonic evolution of the metamorphic rocks of the Plattenkalk group in SW Crete. Data from the geological map of Greece (Vatolakkos sheet, 1:50.000) and from the literature have been supplemented by geological mapping and structural analyses. In our study we applied interactive 3D CAD methods implemented in the integrated software package SURPAC2000. The surface geology has been draped over a digital elevation model of the topography in order to model the geometry of the subsurface structures. Two hypotheses about the geological structure of the region are examined: a) the one given by the existing geological map, which proposes a syncline structure and b) the one resulting from the combination of existing data, corrections carried out through repeated 3D simulations and new field observations. After distinguishing in the S of the study area the Trypali union, overthrusted on the Plattenkalk group, we propose an anticline structure with a NNE/SSW striking axis dipping to the NE.


1970 ◽  
Vol 47 (2) ◽  
pp. 442-456
Author(s):  
Sammy O Ombiro ◽  
Akinade S Olatunji ◽  
Eliud M Mathu ◽  
Taiwo R Ajayi

Despite Lolgorien being one of the most active gold mining areas in Kenya, it is one of the most geologically understudied areas. To the best knowledge of the authors, Lolgorien geological map was last updated in the 1940s. Current technologies such as remote sensing allow new structural features such as faults to be easily identified. In this regard, this study employed remote sensed data to map structural features found in and around Lolgorien Subcounty, Narok, Kenya. This was done to identify any new structural features that might have been missed in the past. Shuttle Radar 152 Topography Mission Digital Elevation Model (SRTM-DEM) image was downloaded and analysed using hillshade technique. From this analysis, the research identified new structural features which were not included in the current geological map but exist on the ground. One such structural feature (fault) is located approximately at 9866237, 703601 (Universal Transverse Mercator, UTM coordinates) and trends in NW–SE direction. The study also found that most of the lineaments are concentrated in the southern part of Lolgorien area and around or at areas dominated by the banded iron formations. Petrographic analysis of the few samples collected from the area showed presence of gold, pyrite and chalcopyrite mineralisation. Keywords: SRTM-DEM, lineaments, geological structures, hillshade analysis, Lolgorien area  


2017 ◽  
Author(s):  
Florin Constantin MIHAI

Landslides are common and frequent geomorphic phenomena for the plateau regions in Romania having important consequences, especially economic ones, that needs designing scientific and technical plans for landslide risk mitigation. For this, an important preliminary step is assessing and mapping the landslide susceptibility. This paper examines a plateau zone in eastern Romania providing such a map, based on the landslides inventory, the digital elevation model (DEM) and the thematic layers of several factors thought to be potential predictors of landslides occurrence: topographic features, land use, and lithology. The methodological framework is based on the analytical hierarchy process (AHP) principles and factors weights attributed based on frequency of landslides. The predictive performance of the model was assessed using the confusion matrix, the ROC (receiver operating characteristic) curve and the AUC (area under curve) parameter. The results indicate a good correspondence between the susceptibility estimated for the test samples and for the validation samples


2015 ◽  
Vol 3 (10) ◽  
pp. 5891-5921
Author(s):  
P. K. Luzon ◽  
K. P. Montalbo ◽  
J. A. M. Galang ◽  
J. M. Sabado ◽  
C. M. Escape ◽  
...  

Abstract. The 2006 Guinsaugon landslide in St. Bernard, Southern Leyte is one of the largest known landslides in the Philippines in recent history. It consists of a 15–20 million m3 rockslide-debris avalanche from an approximately 675 m high mountain weakened by continuous movement of the Philippine fault. The catastrophic Guinsaugon landslide killed 1221 people and displaced 19 000 residents over its 4.5 km path. To investigate the present day morphology of the scar and potential failure that may occur, analysis of a 5 m resolution IfSAR-derived Digital Elevation Model was conducted using Coltop3D and Matterocking software, leading to the generation of a landslide hazard map for the province of Southern Leyte in Central Philippines. The dip and dip-direction of discontinuity sets that contribute to gravitational failure in mountainous areas of the province were identified and measured using a lower Schmidt-Lambert color scheme. After measurement of the morpho-structural orientations, potential sites of failure were analyzed. Conefall was then utilized to compute the extent of rock mass runout. Results of the analysis show instability in the scarp area of the 2006 Guinsaugon landslide and in adjacent slopes because of the presence of steep discontinuities that range from 45–60°. Apart from the 2006 Guinsaugon landslide site, runout models simulated farther rock mass extent in its adjacent slopes, revealing a high potential for fatal landslides to happen in the municipality of St. Bernard. Concerned agencies may use maps produced in the same manner as this study to identify possible sites where structurally-controlled landslides can occur. In a country like the Philippines, where fractures and faults are common, this type of simulated hazard maps would be useful for disaster prevention and facilitate disaster risk reduction efforts for landslide-susceptible areas.


2021 ◽  
Author(s):  
Mesfin Anteneh ◽  
Dereje Biru

Abstract This research was administered to spatially predict the soil loss rate of kaffa zone using model estimate and GIS. Revised Universal Soil Loss Equation (RUSLE) adapted to Ethiopian conditions was accustomed estimate potential soil losses by utilizing information on rainfall erosivity (R) using interpolation of rainfall data, soil erodibility (K) using DSMW soil map, vegetation cover (C) using Sentinel-2A satellite images, topography (LS) using Digital Elevation Model (DEM) and conservation practices (P ) using DEM and satellite images. supported the analysis, the mean and total annual soil loss potential of the study area was 30 tons ha-1 year-1 and 36264.5tons ha-1 year-1, respectively. The result also showed that about 2.89, 8.02, 15.31 and 73.78% of the study area were classified a slight, moderate, high and very high with values ranging 0 to 15 ,15 to50,50 to 200, and > 200 tons ha-1 year-1, respectively. The study demonstrates that the RUSLE using GIS and RS provides great advantage to spatially analyze multi-layer of knowledge. The expected amount of soil loss and its spatial distribution could facilitate sustainable land use and management.


2021 ◽  
Vol 916 (1) ◽  
pp. 012009
Author(s):  
A R A Prasetya ◽  
T A Rachmawati ◽  
F Usman

Abstract Throughout 2016-2021, there were 31 landslides that have caused physical, economic, and social damages. Bumiaji Sub-District has several tourist destinations that are potentially exposed to landslides. This study aims to create a landslide risk map in Bumiaji Sub-District. This research was conducted during the COVID-19 pandemic situation. Therefore, the data collected was secondary data obtained from Google satellite images, Google Street View, the digital elevation model from the National Geospatial Institution, and other literature reviews. The data was then analysed using a landslide risk assessment based on Perka BNPB Number 2/2012. The results of this risk analysis show that Bumiaji Sub-District is dominated by low-level risk (48%), followed by high-level risk (30%), and medium-level risk (15%). High-risk level is affected by high hazards and vulnerabilities, especially in Giripurno Village. High hazard level is affected by high intensity of rainfall, slope degree, the sensitivity of soil to erosion, and the type of land cover. High vulnerabilities are affected by physical, social, and economic aspects susceptible to losses.


Author(s):  
K. T. Chang ◽  
J. Dou ◽  
Y. Chang ◽  
C. P. Kuo ◽  
K. M. Xu ◽  
...  

The purposes of this study are to identify the maximum number of correlated factors for landslide susceptibility mapping and to evaluate landslide susceptibility at Sihjhong river catchment in the southern Taiwan, integrating two techniques, namely certainty factor (CF) and artificial neural network (ANN). The landslide inventory data of the Central Geological Survey (CGS, MOEA) in 2004-2014 and two digital elevation model (DEM) datasets including a 5-meter LiDAR DEM and a 30-meter Aster DEM were prepared. We collected thirteen possible landslide-conditioning factors. Considering the multi-collinearity and factor redundancy, we applied the CF approach to optimize these thirteen conditioning factors. We hypothesize that if the CF values of the thematic factor layers are positive, it implies that these conditioning factors have a positive relationship with the landslide occurrence. Therefore, based on this assumption and positive CF values, seven conditioning factors including slope angle, slope aspect, elevation, terrain roughness index (TRI), terrain position index (TPI), total curvature, and lithology have been selected for further analysis. The results showed that the optimized-factors model provides a better accuracy for predicting landslide susceptibility in the study area. In conclusion, the optimized-factors model is suggested for selecting relative factors of landslide occurrence.


Author(s):  
Bogarth K. Watuwaya ◽  
Herlistin Mooy

Penelitian ini bertujuan untuk mengidentifikasi padang pengembalaan alam di Kecamatan Pandawai, Kabupaten Sumba Timur, Propinsi Nusa Tenggara Timur. Kecamatan ini memiliki tingkat populasi ternak ruminansia terbesar dan wilayah padang rumput terluas di Kabupaten Sumba Timur. Untuk menduga  kapasitas tampung padang rumput perlu dilakukan  suatu  rangkaian tindakan identifikasi untuk memperoleh data luasan, letak dan keadaan topografi. Identifikasi secara manual sangat membutuhkan waktu dan tenaga kerja, melalui pendekatan teknologi pengindraan jauh akan mempersingkat waktu, tenaga serta meningkatkan presisinya. Metode yang digunakan adalah klasifikasi terbimbing dengan alogaritma kemungkinan maksimum (maximum likelihood) citra Sentinel-2A. metode confusion matrix digunakan  untuk menguji keakurasian klasifikasi.. Klasifikasi kelas kelerengan menggunakan data digital elevation model dari DEMNAS. Hasil penelitian menunjukkan bahwa luas area non padang rumput sebesar 6.568 hektar, area padang rumput seluas 39.860 hektar. Hasil uji akurasi confusion matrix sebesar 91, 72%. Kelerengan terbagi dalam lima kelas, dimana luas area kelas 0 - 8%  (31.691 Ha), 8-15% (1.433 Ha), 15-25% (2.203 Ha), 25-40% (362 Ha) dan >40% (10.888 Ha).


Sign in / Sign up

Export Citation Format

Share Document