scholarly journals Land Use Land Cover Change Analysis in Fagge Local Government, Kano State from 1991-2019

2020 ◽  
Author(s):  
Al-amin Abbas Ahmad

Abstract Land Use and Land Cover (LULC) are important components of the environmental system and changes in it mirror the impacts of human activities on the environment. These impacts needed to be determined in order to get a clear picture of the extent at which different land use practices change over time. This study focused on the Land use and land cover changes of Fagge local government Kano state between 1991 and 2019 and also identify the driving forces of such changes. The data for the study two 30m x 30m Landsat images (Landsat 4&8) of the two years i.e. 2019 and 1991. The two images undergo series of image analysis and classification using ArcGIS 10.7 and ENVI 5.1 and the result where presented in form of maps, charts and tables. The result also shows that the changes that occurred from 1991 to 2019 in Fagge local government to be positive and negative changes. There happen to be a positive in the size of built-up areas in Fagge from 1991 – 2019 with a change of +4.678km2. The vegetation cover experienced a negative change of -8.87km2 while the barren land also had an increase in size with a positive change of +4.199. The data collected from previous studies indicated that the main driving behind the various changes may include; urban expansion, population growth, commercial and economic activities, security, and Government law and policies. It was recommended that Sufficient land use/land cover information should be acquired, Sensitization programs on land use / land cover, Geospatial techniques should be adopted by Government and NGO’s and lastly Government policies should geared to ensuring that there is balance in the utilization of the available land in the country

2021 ◽  
Vol 13 (16) ◽  
pp. 3337
Author(s):  
Shaker Ul Din ◽  
Hugo Wai Leung Mak

Land-use/land cover change (LUCC) is an important problem in developing and under-developing countries with regard to global climatic changes and urban morphological distribution. Since the 1900s, urbanization has become an underlying cause of LUCC, and more than 55% of the world’s population resides in cities. The speedy growth, development and expansion of urban centers, rapid inhabitant’s growth, land insufficiency, the necessity for more manufacture, advancement of technologies remain among the several drivers of LUCC around the globe at present. In this study, the urban expansion or sprawl, together with spatial dynamics of Hyderabad, Pakistan over the last four decades were investigated and reviewed, based on remotely sensed Landsat images from 1979 to 2020. In particular, radiometric and atmospheric corrections were applied to these raw images, then the Gaussian-based Radial Basis Function (RBF) kernel was used for training, within the 10-fold support vector machine (SVM) supervised classification framework. After spatial LUCC maps were retrieved, different metrics like Producer’s Accuracy (PA), User’s Accuracy (UA) and KAPPA coefficient (KC) were adopted for spatial accuracy assessment to ensure the reliability of the proposed satellite-based retrieval mechanism. Landsat-derived results showed that there was an increase in the amount of built-up area and a decrease in vegetation and agricultural lands. Built-up area in 1979 only covered 30.69% of the total area, while it has increased and reached 65.04% after four decades. In contrast, continuous reduction of agricultural land, vegetation, waterbody, and barren land was observed. Overall, throughout the four-decade period, the portions of agricultural land, vegetation, waterbody, and barren land have decreased by 13.74%, 46.41%, 49.64% and 85.27%, respectively. These remotely observed changes highlight and symbolize the spatial characteristics of “rural to urban transition” and socioeconomic development within a modernized city, Hyderabad, which open new windows for detecting potential land-use changes and laying down feasible future urban development and planning strategies.


2020 ◽  
Vol 52 (3) ◽  
pp. 306
Author(s):  
Murtala Dangulla ◽  
Latifah Abd Manaf ◽  
Firuz Ramli Mohammad

Urbanization is currently one of the most pressing environmental issues which cuts across all countries at unprecedented rates and intensities, with far reaching consequences on ecosystems, biodiversity and human wellbeing. This paper assessed urban expansion and land use/land cover changes in Sokoto metropolis, North-western Nigeria using Remote Sensing and GIS. Landsat images of 1990, 1999 and 2015 were processed for LULC classification and change detection using the Maximum Likelihood Classification, Post Classification Comparison techniques and the Land Change Modeler. The classification revealed five broad land cover classes which include Built-up Area, Farmland, Green Area, Open Space and Wetland/Water. The Built-up and Green areas continuously increased while Farmland and Open space decreased throughout the study period. The metropolis expanded radially at a faster rate between 1999 and 2015 with the highest rate of increase (1890.5ha per annum) recorded in the Built-up Area. This implies a doubling time of approximately 30 years at the expense of Farmland and Open space which may be completely exhausted in 40 and 29 years respectively. Infrastructural provision should thus align with the rate and direction of growth and where the Green Area is converted, replacement should be made to ensure continued supply and stability of the numerous ecosystem services green areas provide.


2021 ◽  
Vol 6 (3) ◽  
pp. 320-328
Author(s):  
Suraj Prasad Bist ◽  
Rabindra Adhikari ◽  
Raju Raj Regmi ◽  
Rajan Subedi

The present study was conducted in the Mohana watershed of Far-western Nepal to assess land use land cover change. The study has used ArcGIS and three Landsat images - Landsat TM (1999), Landsat ETM+ (2009), and Landsat OLI (2019) – to analyze land use the land cover change of the watershed. The change matrix technique was used for change detection analysis. The study area was classified into five classes; forest, agriculture, built-up, water bodies, and barren lands. The study has found that among the five identified classes forest and build-up increased positively from 45.40 % to 51.51 % - forest cover and 11.26 % to 19. 85 % - build-up respectively. Similarly, agricultural land and water bodies initially increased but after 2009 both land cover areas decreased to 23.79 % and 0.73 % from 31.38 % and 0.97 % in 2009 respectively. Barren land decreased from 15.37% to 4.12% over the last 20 years. This study might support land-use planners and policymakers to adopt the best suitable land use management option for the Mohana watershed.


Author(s):  
S. Ravichandran ◽  
I. K. Manonmani

Land use / Land cover change is one of the most sensitive factors that show the interactions between human activities and the ecological environment. This research study demonstrated the importance of geographical information system and remote sensing technologies in spatial temporal data analysis and also this paper shows a GIS and remote sensing approach for modeling of spatial - temporal pattern of land use and land cover change (LULC) in a fastest growing towns / industrial region of Karur town. QGIS 3.10 version and Arc GIS 10.2 software platforms were utilized in the study for Image processing, LULC mapping and change detection analysis. USGS Earth explorer Landsat series satellite imageries were acquired and LULC maps were prepared for the years 1991, 2000, 2010 and 2020. Supervised classification with maximum likelihood algorithm is adopted for LULC classification. The LULC classes are Built upland, Agricultural land, Barren land and Water body based on NRSA Level – I supervised classification. The Built-up area has drastically increased from 1991 to 2020. It has increased more than double. It was 17 percent in 1991 and increased to 40 percent in 2020. This clearly shows Karur town is the becoming more and more urbanized.


2019 ◽  
Vol 2 (2) ◽  
pp. 87-99
Author(s):  
Shiva Pokhrel ◽  
Chungla Sherpa

Conservation areas are originally well-known for protecting landscape features and wildlife. They are playing key role in conserving and providing a wide range of ecosystem services, social, economic and cultural benefits as well as vital places for climate mitigation and adaptation. We have analyzed decadal changes in land cover and status of vegetation cover in the conservation area using both national level available data on land use land cover (LULC) changes (1990-2010) and normalized difference vegetation index (NDVI) (2010-2018) in Annapurna conservation area. LULC showed the barren land as the most dominant land cover types in all three different time series 1990, 2000 and 2010 with followed by snow cover, grassland, forest, agriculture and water body. The highest NDVI values were observed at Southern, Southwestern and Southeastern part of conservation area consisting of forest area, shrub land and grassland while toward low to negative in the upper middle to the Northern part of the conservation area.


2021 ◽  
Vol 10 (5) ◽  
pp. 272
Author(s):  
Auwalu Faisal Koko ◽  
Wu Yue ◽  
Ghali Abdullahi Abubakar ◽  
Akram Ahmed Noman Alabsi ◽  
Roknisadeh Hamed

Rapid urbanization in cities and urban centers has recently contributed to notable land use/land cover (LULC) changes, affecting both the climate and environment. Therefore, this study seeks to analyze changes in LULC and its spatiotemporal influence on the surface urban heat islands (UHI) in Abuja metropolis, Nigeria. To achieve this, we employed Multi-temporal Landsat data to monitor the study area’s LULC pattern and land surface temperature (LST) over the last 29 years. The study then analyzed the relationship between LULC, LST, and other vital spectral indices comprising NDVI and NDBI using correlation analysis. The results revealed a significant urban expansion with the transformation of 358.3 sq. km of natural surface into built-up areas. It further showed a considerable increase in the mean LST of Abuja metropolis from 30.65 °C in 1990 to 32.69 °C in 2019, with a notable increase of 2.53 °C between 2009 and 2019. The results also indicated an inverse relationship between LST and NDVI and a positive connection between LST and NDBI. This implies that urban expansion and vegetation decrease influences the development of surface UHI through increased LST. Therefore, the study’s findings will significantly help urban-planners and decision-makers implement sustainable land-use strategies and management for the city.


Author(s):  
B. Varpe Shriniwas D. Payal Sandip

In the present study, an effort has been made to study in detail of Land Use/Land Cover Mapping for Sambar watershed by using Remote Sensing and GIS technique was carried out during the year of 2020-2021 in Parbhani district. In this research the Remote Sensing and Geographical Information system technique was used for identifying the land use/land cover classes with the help of ArcGIS 10.8 software. The Sambar watershed is located in 19º35ʹ78.78˝ N and 76º87ʹ88.44˝ E in the Parbhani district of Marathwada region in Maharashtra. It is covered a total area 97.01 km2. The land use/land cover map and its classes were identified by the Supervised Classification Method in ArcGIS 10.8 software by using the Landsat 8 satellite image. Total six classes are identified namely as Agricultural area, Forest area, Urban area, Barren land, Water bodies and Fallow land. The Agricultural lands are well distributed throughout the watershed area and it covers 4135 ha. (43 per cent). Forest occupies 502 ha area and sharing about 5 per cent of the total land use land cover of the study area. The Urban land occupies 390 ha. area (4 per cent) and there was a rapid expansion of settlement area. Barren land occupies 3392 ha. area (35 per cent). A water bodies occupy 630 ha. area (6 per cent) and the Fallow land occupies 650 ha (7 per cent) but well-developed dendritic drainage pattern and good water availability is in the Sambar watershed.


Sign in / Sign up

Export Citation Format

Share Document