scholarly journals Correlation Analysis of stem hardness traits with fiber and yield-related traits in core collections of Gossypium hirsutum

2020 ◽  
Author(s):  
Irum Raza ◽  
Dao-Wu Hu ◽  
Adeel Ahmad ◽  
Hongge Li ◽  
Shou-Pu He ◽  
...  

Abstract Background Stem hardness is one of the major influencing factors for plant architecture in upland cotton (Gossypium hirsutum L.). Evaluating hardness phenotypic traits is very important for the selection of elite lines for resistance to lodging in Gossypium hirsutum L. Cotton breeder are interested in using diverse genotypes to enhance fiber quality and high-yield. The research for hardness and its relation with fiber quality and yield were very few. This study was designed to find the relationship of stem hardness traits with fiber quality and yield contributing traits of upland cotton. Results Experiments were carried out to measure the bending, acupuncture, and compression properties of the stem from a collection of upland cotton genotypes, comprising 237 accessions. The results showed that the genotypic difference in stem hardness was highly significant among the genotypes, and the stem hardness traits (BL, BU, AL, AU, CL, and CU) have a positive association with fiber quality traits and yield-related traits. Statistical analyses of the results showed that bending (BL, BU) has a maximum coefficient of variance and trait fiber length and fiber strength have less coefficient of variance among the genotypes. Principal component analysis (PCA) reduced quantitative characters into nine principal components. The first nine principal components (PC) with Eigenvalues >1 explained 86% of the variation among 237 accessions of the cotton crop. Both 2017& 2018, PCA results indicated that BL, BU, FL, FE, and LI variables contributed their variability in PC1 and BU, AU, CU, FD, LP, and FWPB have shown their variability in PC2. Conclusion We describe here, to the best of our knowledge, the systematic study of the mechanism involved in the regulation of enhancing fiber quality and yield by stem bending strength, acupuncture, and compression properties of Gossypium hirsutum crop.

2020 ◽  
Author(s):  
Irum Raza ◽  
Dao-Wu Hu ◽  
Adeel Ahmad ◽  
Hongge Li ◽  
Shou-Pu He ◽  
...  

Abstract Background Stem hardness is one of the major influencing factors for plant architecture in upland cotton (Gossypium hirsutum L.). Evaluating hardness phenotypic traits is very important for the selection elite lines for resistant to lodging in Gossypium hirsutum L. Cotton breeder are interested in using diverse genotypes to enhance fibre quality and high- yield. The research for hardness and its relation with fiber quality and yield were very few. This study was designed to find the relationship of stem hardness traits with fiber quality and yield contributing traits of upland cotton. Results Experiments were carried out to measure the bending, acupuncture and compression properties of stem from a collection of upland cotton genotypes, comprising 237 accessions. The results showed that the genotypic difference in stem hardness were highly significant among the genotypes, and the stem hardness traits (BL, BU, AL, AU, CL and CU) have a positive association with fiber quality traits and yield related traits. In descriptive statistics result bending (BL, BU) have maximum coefficient of variance and trait fiber length and fiber strength have less coefficient of variance among the genotypes. Principal component analysis (PCA) reduced quantitative characters into nine principal components. The first nine principal components (PC) with Eigen values >1 explained 0.86% of variation among 237 accessions of cotton crop. Both 2017& 2018, PCA results indicated that BL, BU, FL, FE and LI variables contributed their variability in PC1 and BU, AU, CU, FD, LP and FWPB have shown their variability in PC2. Conclusion We describe here, to the best of our knowledge, the systematic study of the mechanism involved in the regulation of enhancing fiber quality and yield by stem bending strength, acupuncture and compression properties of Gossypium hirsutum crop.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Irum RAZA ◽  
Daowu HU ◽  
Adeel AHMAD ◽  
Hongge LI ◽  
Shoupu HE ◽  
...  

Abstract Background Stem hardness is one of the major influencing factors for plant architecture in upland cotton (Gossypium hirsutum L.). Evaluating hardness phenotypic traits is very important for the selection of elite lines for resistance to lodging in Gossypium hirsutum L. Cotton breeders are interested in using diverse genotypes to enhance fiber quality and high-yield. Few pieces of research for hardness and its relationship with fiber quality and yield were found. This study was designed to find the relationship of stem hardness traits with fiber quality and yield contributing traits of upland cotton. Results Experiments were carried out to measure the bending, acupuncture, and compression properties of the stem from a collection of upland cotton genotypes, comprising 237 accessions. The results showed that the genotypic difference in stem hardness was highly significant among the genotypes, and the stem hardness traits (BL, BU, AL, AU, CL, and CU) have a positive association with fiber quality traits and yield-related traits. Statistical analyses of the results showed that in descriptive statistics result bending (BL, BU) has a maximum coefficient of variance, but fiber length and fiber strength have less coefficient of variance among the genotypes. Principal component analysis (PCA) trimmed quantitative characters into nine principal components. The first nine principal components (PC) with Eigenvalues > 1 explained 86% of the variation among 237 accessions of cotton. Both 2017 and 2018, PCA results indicated that BL, BU, FL, FE, and LI contributed to their variability in PC1, and BU, AU, CU, FD, LP, and FWPB have shown their variability in PC2. Conclusion We describe here the systematic study of the mechanism involved in the regulation of enhancing fiber quality and yield by stem bending strength, acupuncture, and compression properties of G. hirsutum.


2020 ◽  
Vol 10 (2) ◽  
pp. 66
Author(s):  
. HASNAM ◽  
EMY SULISTYOWATI ◽  
SIWI SUMARTINI ◽  
FITRINTNGDYAH TRI KADARWATI ◽  
PRIMA D. RIAJAYA

<p>Tujuan utama pemuliaan kapas di Indonesia adalah meningkatkan produktivitas dan kualitas serat dalam upaya meningkatkan pendapatan petani dan memperbaiki mutu benang tcnun seta kualitas tekstil yang harus bersaing di pasar internasional. Scjumlah enam persilangan telah dilakukan antara dua varietas dai India. I.RA 5166 dan SRT-1 dengan dua varietas dai Amerika Serikat, Dcltapine 55 dan Deltapinc Acala 90 dan satu vaietas dai Australia, Siokra. Seleksi individu, seleksi galur dan seleksi individu dalam galur dilaksanakan pada generasi F2 sampai F5 berdasarkan jumlah buah, tingkat kerusakan daun terhadap Sundapteryx biguttula. dan mutu serat; semua proses di atas dilakukan pada kondisi lahan tadah hujan, dan tanpa penggunaan insektisida terhadap tanaman; dari proses di atas diperoleh 12 galur harapan. Sejumlah 13 percobaan dilakukan antara tahun 1993 sampai dengan 2001 untuk mengamati kcragaan galur-galur baru tersebut; pengujian dilakukan di Jawa Timur dan Sulawesi Selatan, menggunakan teknik-teknik penelitian standar. Dengan proscdur ini dapat diidcntifikasi beberapa galur yang menunjuk¬ kan perbaikan serenlak hasil dan kualitas serat kapas. Beberapa penelitian juga dilakukan untuk mcngcvaluasi tanggap galur-galur tersebut pada tumpangsari dengan kedelai dan kacang hijau di Jawa Timur. Dua galur, 88003/16/2 dan 92016/6 (sudah dilepas dengan nama vaietas Kanesia 8 dan Kanesia 9 pada bulan Juni 2003), menunjukkan produktivitas dan kualitas serai yang lebih linggi. Rata-rata, kedua vaietas menghasilkan 1.85 ton dan 191 ton kapas berbiji per hektar atau 8-12% lebih tinggi dai hasil vaietas Kanesia 7 yang sudah dilepas sebelumnya. Persentase serat 35.2%, kekuatan serat berkisar antara 22.6-24.7 gram tex'1, serat lebih panjang dan berkisar 29.2-30.3 mm sedangkan angka mikroncr lebih rendah yang menyatakan bahwa serat lebih halus. Semua perbaikan di atas menunjukkan perbaikan mutu serat. Kanesia 8 dan Kanesia 9 juga menunjukkan peningkatan ketahanan terhadap Sundapteryx biguttula dan komplcks hama kapas. Kanesia 8 dan Kanesia 9 kurang kompctitif dalam tumpang sari dengan kedelai jika dibandingkan dengan Kanesia 7. Pada tumpang sari dengan kacang hijau Kanesia 8 juga mengalami kehilangan hasil yang tinggi, sedangkan Kanesia 9 menunjukkan toleransi yang tinggi dalam kompctisi dengan kacang hijau. Pelepasan Kanesia 8 dan Kanesia 9 akan memberikan pilihan varietas yang lebih banyak bagi petani dan perusahaan pemintalan untuk menyesuaikan dengan produk akhirnya.</p><p>Kata kunci : Gossypium hirsutum, prosedur pemuliaan, produktivitas, kualitas serat, Sundapteryx biguttula, tumpangsari</p><p> </p><p><strong>ABSTRACT </strong></p><p><strong>Genetic improvement on two new cotton varieties, Kanesia 8 and Kanesia 9</strong></p><p>The main objective of cotton breeding in Indonesia is to improve productivity and fiber quality which is aimed to increase farmers' income and to make beter yam and textile quality that has to compete in international market Six crosses were made between two Indian varieties, LRA 5166 and SRT-1 with two USA vaieties, Deltapine 55 and Deltapinc Acala 90 and one Australian variety, Siokra. Individual plants, lines and individual within lines were selected on F2-F5 generations based on boll- counts, leaf-damage by jassids and fiber traits, those were conducted under rainfed and insecticide-ree condition; twelve promising lines were produced from this process. A total of 13 trials were carried out to observe performance of these new lines during 1993 to 2001; those were located in East Java and South Sulawesi using the standardized experimental techniques. By these procedures make it possible to identify several breeding lines showing simultaneous improvement in yield and fiber quality. Several tests were also made to evaluate response of those lines under intercropping with soybean and mungbean, which were located in East Java. Two breeding lines, 88003/16/2 and 92016/6 (those have been released as Kanesia 8 and Kanesia 9 in 2003), showed higher productivity and fiber quality. In average, these new vaieties produced 1.85 and 1.91 ton ha'1 seed cotton respectively or 8 to 12% higher than those on Kanesia 7, the previously released vaiety. Lint turn-out was 35.2% fiber-strength was varied from 22.6 to 24.7 gram tex'1 , fiber lengths ranged from 29.2 to 30.3 mm with lower micronaire-valucs indicating better fiber-ineness. All of those improvements represented a trend toward a higher quality iber. Kanesia 8 and Kanesia 9 also showed a slight improvement in resistance to jasssids and insect pest-complex. Kanesia 8 and Kanesia 9 performed lower competitive ability under intercropping with soybean in comparison with Kanesia 7. Under intercropping with mungbean Kanesia 8 also suffered high yield loss, wherein Kanesia 9 showed good tolerance to mungbean. The release of Kanesia 8 and Kanesia 9 is expected to give a broader choice for the cotton growers and spinning-mills to match with their inal product.</p><p>Key words: Coton (Gossypium hirsutum), breeding procedure, productivity, liber quality, Sundapteryx bigullul. inter¬ cropping.</p>


Author(s):  
An-hui Guo ◽  
Ying Su ◽  
Yi Huang ◽  
Yu-mei Wang ◽  
Hu-shuai Nie ◽  
...  

Abstract Key message QTL for fiber quality traits under salt stress discerned candidate genes controlling fatty acid metabolism. Abstract Salinity stress seriously affects plant growth and limits agricultural productivity of crop plants. To dissect the genetic basis of response to salinity stress, a recombinant inbred line population was developed to compare fiber quality in upland cotton (Gossypium hirsutum L.) under salt stress and normal conditions. Based on three datasets of (1) salt stress, (2) normal growth, and (3) the difference value between salt stress and normal conditions, 51, 70, and 53 QTL were mapped, respectively. Three QTL for fiber length (FL) (qFL-Chr1-1, qFL-Chr5-5, and qFL-Chr24-4) were detected under both salt and normal conditions and explained 4.26%, 9.38%, and 3.87% of average phenotypic variation, respectively. Seven genes within intervals of two stable QTL (qFL-Chr1-1 and qFL-Chr5-5) were highly expressed in lines with extreme long fiber. A total of 35 QTL clusters comprised of 107 QTL were located on 18 chromosomes and exhibited pleiotropic effects. Thereinto, two clusters were responsible for improving five fiber quality traits, and 6 influenced FL and fiber strength (FS). The QTL with positive effect for fiber length exhibited active effects on fatty acid synthesis and elongation, but the ones with negative effect played passive roles on fatty acid degradation under salt stress.


Euphytica ◽  
2014 ◽  
Vol 201 (2) ◽  
pp. 195-213 ◽  
Author(s):  
Shiyi Tang ◽  
Zhonghua Teng ◽  
Tengfei Zhai ◽  
Xiaomei Fang ◽  
Fang Liu ◽  
...  

2017 ◽  
Vol 130 (4) ◽  
pp. 795-806 ◽  
Author(s):  
Xiaomei Fang ◽  
Xueying Liu ◽  
Xiaoqin Wang ◽  
Wenwen Wang ◽  
Dexin Liu ◽  
...  

2016 ◽  
Vol 155 (4) ◽  
pp. 613-628 ◽  
Author(s):  
C. Q. LI ◽  
N. DONG ◽  
Y. Z. FU ◽  
R. R. SUN ◽  
Q. L. WANG

SUMMARYAssociation mapping based on linkage disequilibrium is an effective approach for dissecting the inheritance of complex multi-gene traits. In the present study, association mapping was performed for yield traits based on 172 popular Upland cotton (Gossypium hirsutum L.) cultivars in China and 331 polymorphic simple sequence repeat (SSR) markers. The gene diversity index of 331 markers ranged from 0·0387 to 0·7799 with an average of 0·4002, and the polymorphism information content ranged from 0·0379 to 0·7473 with an average of 0·3375. A total of 93 significantly associated markers for seven yield traits were identified across more than one environment, among which 11 were for seed cotton yield, 12 for lint yield, 11 for boll number per plant, 13 for boll weight, 21 for lint percentage, 14 for lint index and 11 for seed index. The corresponding ranges in phenotypic variation explained by markers across four environments for these seven traits were 1·75–10·49, 1·75–9·34, 2·84–11·80, 2·59–9·89, 2·38–13·97, 2·73–14·82 and 2·50–11·88%, respectively. Some of the yield-associated markers detected were found to be linked to or associated with the same traits identified in previous studies. Furthermore, elite alleles for yield traits were also mined. The present study can provide useful information for further understanding the genetic basis of yield traits, and facilitate high-yield breeding by molecular design in Upland cotton.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 119 ◽  
Author(s):  
Xianyan Zou ◽  
Aiying Liu ◽  
Zhen Zhang ◽  
Qun Ge ◽  
Senmiao Fan ◽  
...  

Upland cotton (Gossypium hirsutum) is grown for its elite fiber. Understanding differential gene expression patterns during fiber development will help to identify genes associated with fiber quality. In this study, we used two recombinant inbred lines (RILs) differing in fiber quality derived from an intra-hirsutum population to explore expression profiling differences and identify genes associated with high-quality fiber or specific fiber-development stages using RNA sequencing. Overall, 72/27, 1137/1584, 437/393, 1019/184, and 2555/1479 differentially expressed genes were up-/down-regulated in an elite fiber line (L1) relative to a poor-quality fiber line (L2) at 10, 15, 20, 25, and 30 days post-anthesis, respectively. Three-hundred sixty-three differentially expressed genes (DEGs) between two lines were colocalized in fiber strength (FS) quantitative trait loci (QTL). Short Time-series Expression Miner (STEM) analysis discriminated seven expression profiles; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation were performed to identify difference in function between genes unique to L1 and L2. Co-expression network analysis detected five modules highly associated with specific fiber-development stages, especially for high-quality fiber tissues. The hub genes in each module were identified by weighted gene co-expression network analysis. Hub genes encoding actin 1, Rho GTPase-activating protein with PAK-box, TPX2 protein, bHLH transcription factor, and leucine-rich repeat receptor-like protein kinase were identified. Correlation networks revealed considerable interaction among the hub genes, transcription factors, and other genes.


Sign in / Sign up

Export Citation Format

Share Document