scholarly journals Toward Understanding Curcumin Delivery by Trimethyl Chitosan -polyethylene Glycol: Optimization Ofpolymer Concentration and Chain Length by Molecular Dynamics

2020 ◽  
Author(s):  
Somayeh Sohrabi ◽  
Mohammad Khedri ◽  
Reza Maleki ◽  
Mostafa Moraveji ◽  
Ebrahim Ghasemy

Abstract The second main cause of death in the world and one of the major public health problems is cancer. Curcumin is anatural bioactive substance with good anti-cancerous effect.However, due to thelow cellular uptake of curcumin anti-cancer drug, it is vital to exploit a noble formulation, which can contribute to a decrease in its hydrophobicity and enables theefficient therapeutic effect of curcumin. Biocompatibility and hydrophilicity of the polyethylene glycol cause itto be one of the most attractive drug carriers. Chitosan is also of great importance, consideringits biocompatibility,and is used along with thedrug-carrying polymers. In this study, for the first time, a combination oftrimethyl chitosan and polyethylene glycol was employedto deliver curcumin.Herein, hydrophilicity, stability, and energy analysis of the systems have been investigated, from which it was found thatthe 60/40 is the optimum ratio concentration ofchitosan to polyethylene glycol for Curcumin delivery. Another characteristic property of the hybrid drug delivery system was the PEG chain length, with its least magnitude being the optimal value. Results of the present molecular study give a practicalinsight into the curcumin drug delivery system and propose a novel hybrid carrier for efficient curcumin delivery, which can be further exploited to develop novel nanomedicine systems.

Author(s):  
Meena K. S. ◽  
Sonia K ◽  
Alamelu Bai S

In order to develop the efficiency and the specificity of anticancer drug delivery, we have designed an innovative nanocarrier. The nanocarrier system comprises of a multifunctional graphene oxide nanoparticle-based drug delivery system (GO-CS-M-DOX) as a novel platform for intracellular drug delivery of doxorubicin (DOX). Firstly, graphene oxide (GO) was synthesized by hummer’s method whose surface was functionalized by chitosan (CS) in order to obtain a more precise drug delivery, the system was then decorated with mannose (M). Further conjugation of an anti-cancer drug doxorubicin to the nanocarrier system resulted in GO-CS-M-DOX drug delivery system. The resultant conjugate was characterized for its physio-chemical properties and its biocompatibility was evaluated via hemolysis assay. The drug entrapment efficiency is as high as 90% and in vitro release studies of DOX under pH 5.3 is significantly higher than that under pH 7.4. The anticancer activity of the synthesized drug delivery system was studied by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay against MCF-7 cell line. These results stated that the pH dependent multifunctional doxorubicin- chitosan functionalized graphene oxide based nanocarrier system, could lead to a promising and potential platform for intracellular delivery and cytotoxicity activity for variety of anticancer drugs.   


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3067
Author(s):  
Mustafa A. Jihad ◽  
Farah T. M. Noori ◽  
Majid S. Jabir ◽  
Salim Albukhaty ◽  
Faizah A. AlMalki ◽  
...  

Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer’s method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa (N. sativa) seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing. AFM results showed GONPs with the main grain size of 24.41 nm, while GONPs–PEG revealed graphene oxide aggregation with the main grain size of 287.04 nm after loading N. sativa seed extract, which was verified by TEM examination. A strong OH bond appeared in FTIR spectra. Furthermore, UV- Vis absorbance peaks at (275, 284, 324, and 327) nm seemed to be correlated with GONPs, GO–PEG, N. sativa seed extract, and GO –PEG- N. sativa extract. The drug delivery system was observed to destroy the bacteria by permeating the bacterial nucleic acid and cytoplasmic membrane, resulting in the loss of cell wall integrity, nucleic acid damage, and increased cell-wall permeability.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Jonathan Rios-Doria ◽  
Adam Carie ◽  
Tara Costich ◽  
Brian Burke ◽  
Habib Skaff ◽  
...  

Chemotherapeutic drugs are widely used for the treatment of cancer; however, use of these drugs is often associated with patient toxicity and poor tumor delivery. Micellar drug carriers offer a promising approach for formulating and achieving improved delivery of hydrophobic chemotherapeutic drugs; however, conventional micelles do not have long-term stability in complex biological environments such as plasma. To address this problem, a novel triblock copolymer has been developed to encapsulate several different hydrophobic drugs into stable polymer micelles. These micelles have been engineered to be stable at low concentrations even in complex biological fluids, and to release cargo in response to low pH environments, such as in the tumor microenvironment or in tumor cell endosomes. The particle sizes of drugs encapsulated ranged between 30–80 nm, with no relationship to the hydrophobicity of the drug. Stabilization of the micelles below the critical micelle concentration was demonstrated using a pH-reversible crosslinking mechanism, with proof-of-concept demonstrated in both in vitro and in vivo models. Described herein is polymer micelle drug delivery system that enables encapsulation and stabilization of a wide variety of chemotherapeutic drugs in a single platform.


2012 ◽  
Vol 22 (36) ◽  
pp. 18864 ◽  
Author(s):  
Youhua Tao ◽  
Jiangfeng Han ◽  
Chunting Ye ◽  
Tima Thomas ◽  
Huanyu Dou

2016 ◽  
Vol 4 (21) ◽  
pp. 3823-3831 ◽  
Author(s):  
Stefano Fedeli ◽  
Alberto Brandi ◽  
Lorenzo Venturini ◽  
Paola Chiarugi ◽  
Elisa Giannoni ◽  
...  

An efficient drug delivery system through a straightforward approach to multi-walled carbon nanotube decoration.


Sign in / Sign up

Export Citation Format

Share Document