scholarly journals Comparison of the Inhibitory Effect of PEG-Liposomal and Conventional Doxorubicin on Migration and Extravasation Efficacy on Canine Osteosarcoma Cell Line- in Vitro and Ex Ovo Studies.

Author(s):  
Magdalena Jolanta Walewska ◽  
Anna Małek ◽  
Bartłomiej Taciak ◽  
Anna Wojtalewicz ◽  
Sylwia Wilk ◽  
...  

Abstract The chick chorioallantoic membrane (CAM) assay has long been used to study the effects of drugs on angiogenesis or evaluate cancer cell invasiveness by quantifying in vivo rates of cancer cell extravasation. Extravasation plays a crucial role in the metastatic cascade, whereby circulating cancer cells derived from the primary tumor cross the endothelial barrier to reach the target metastatic site. Accordingly, we adapted an ex ovo model to study the anti-extravasation efficiency of anticancer drugs. The drugs investigated include conventional and PEG-liposomal doxorubicin. The conventional form is commonly used in chemotherapy protocols for canine appendicular osteosarcoma (OSA), although it has no specific biodistribution and a low therapeutic index. For this reason, this study compared the effects of conventional and PEG-liposomal doxorubicin on cytotoxicity and migration inhibition in the in vitro environment. Cytotoxicity was evaluated by the MTT assay, Annexin V staining and the Draq 7 test; the inhibition of migration was analyzed using the scratch assay test. Moreover the inhibitory effect of study drugs on cancer cell extravasation was analyzed in the in vivo conditions, on the ex ovo model. The results of experiments performed showed that PEG-liposomal doxorubicin has a higher inhibitory effect on the in vitro migration of canine OSA (p ≤ 0.05). Ex ovo research revealed both drugs elicited a high efficiency for inhibiting the extravasation of canine OSA (p< 0.0001). Therefore PEG-liposomal doxorubicin may be considered as a potentially useful anti-metastatic agent in canine osteosarcoma due to its inhibitory effect on both the migration and extravasation of the D-17 cell line.

2018 ◽  
Vol 18 (17) ◽  
pp. 1483-1493
Author(s):  
Ricardo Imbroisi Filho ◽  
Daniel T.G. Gonzaga ◽  
Thainá M. Demaria ◽  
João G.B. Leandro ◽  
Dora C.S. Costa ◽  
...  

Background: Cancer is a major cause of death worldwide, despite many different drugs available to treat the disease. This high mortality rate is largely due to the complexity of the disease, which results from several genetic and epigenetic changes. Therefore, researchers are constantly searching for novel drugs that can target different and multiple aspects of cancer. Experimental: After a screening, we selected one novel molecule, out of ninety-four triazole derivatives, that strongly affects the viability and proliferation of the human breast cancer cell line MCF-7, with minimal effects on non-cancer cells. The drug, named DAN94, induced a dose-dependent decrease in MCF-7 cells viability, with an IC50 of 3.2 ± 0.2 µM. Additionally, DAN94 interfered with mitochondria metabolism promoting reactive oxygen species production, triggering apoptosis and arresting the cancer cells on G1/G0 phase of cell cycle, inhibiting cell proliferation. These effects are not observed when the drug was tested in the non-cancer cell line MCF10A. Using a mouse model with xenograft tumor implants, the drug preventing tumor growth presented no toxicity for the animal and without altering biochemical markers of hepatic function. Results and Conclusion: The novel drug DAN94 is selective for cancer cells, targeting the mitochondrial metabolism, which culminates in the cancer cell death. In the end, DAN94 has been shown to be a promising drug for controlling breast cancer with minimal undesirable effects.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2014 ◽  
Vol 8 (Suppl 4) ◽  
pp. P22
Author(s):  
Klesia Madeira ◽  
Murilo Cerri ◽  
Renata Daltoé ◽  
Alice Herlinger ◽  
João Filho ◽  
...  

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 805-808
Author(s):  
Ravikumar Raju ◽  
Teja ◽  
Sravanathi P ◽  
Muthu Babu K

Breast cancer is the subsequent foremost reason of cancer death in a woman and ranks as the primary foremost reason of death in India. In its conduct, several measures and recommendation are considered. Homoeopathic medicines are one of the part of a corresponding, and another medicine is utilized for the treatment of cancer. The main purpose of the investigation is to evaluate the anticancer action of homoeopathic arrangements of Asterias rubens  on the basis of the similia principle. We directed an in vitro study using MTT assay to control the result of ultra diluted homoeopathic preparation in contradiction of two human breast glandular cancer cell lines(MCF-7 and MDA-MD- 231), frequently used for the breast cancer treatment, by testing the feasibility of breast cancer (MCF-7 and MDA-MD-231) cell line, with various attenuations of Asterias rubens  at 24 hrs. Multiple comparisons between tested reagents at different concentrations confirmed the significance of the said results. At a dilution of 1:25 6CH and 30CH potency shown superior activity on MCF-7 and no such significant changes on MDA-MD-231 at any dilutions As it fails to offer estrogen receptor(ER) Also progesterone receptor (PR) expression, and also HER2 (human epidermal development variable receptor2) so continuously a triple-negative breast cancer it will be a hostility manifestation for breast cancer with restricted medicine choices. However, further potency needs to be tested. These preliminary significant results warrant further in vitro and in vivo studies to estimate the possible of Asterias rubens  a medicine to treat breast cancer.


2019 ◽  
Vol 18 (1) ◽  
pp. 117-127
Author(s):  
Raquel Sánchez‐Céspedes ◽  
Paolo Accornero ◽  
Silvia Miretti ◽  
Eugenio Martignani ◽  
Francesca Gattino ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1031 ◽  
Author(s):  
Sameh S. Elhady ◽  
Enas E. Eltamany ◽  
Amera E. Shaaban ◽  
Alaa A. Bagalagel ◽  
Yosra A. Muhammad ◽  
...  

Phytochemical study of Chiliadenus montanus aerial parts afforded six compounds; Intermedeol (1), 5α-hydroperoxy-β-eudesmol (2), 5,7-dihydroxy-3,3’,4’-trimethoxyflavone (3), 5,7,4’-trihydroxy-3,6,3’-trimethoxyflavone (jaceidin) (4), eudesm-11,13-ene-1β,4β,7α-triol (5) and 1β,4β,7β,11-tetrahydroxyeudesmane (6). These compounds were identified based on their NMR spectral data. The isolated compounds were tested for their cytotoxicity against liver cancer cell line (HepG2) and breast cancer cell line (MCF-7). Jaceidin flavonoid (4) exhibited the highest cytotoxic effect in vitro. Therefore, both of jaceidin and C. montanus extract were evaluated for their in vivo anti-tumor activity against Ehrlich’s ascites carcinoma (EAC). Compared to control group, jaceidin and C. montanus extract decreased the tumor weight, improved the histological picture of tumor cells, lowered the levels of VEGF and ameliorate the oxidative stress. Molecular docking and in silico studies suggested that jaceidin was a selective inhibitor of VEGF-mediated angiogenesis with excellent membrane permeability and oral bioavailability.


2015 ◽  
Vol 37 (3) ◽  
pp. 933-939 ◽  
Author(s):  
Wei Hu ◽  
ZengMing Xiao

Background/Aims: Phytoestrogens are known to prevent tumor progression by inhibiting proliferation and inducing apoptosis in cancer cells. Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study investigates formononetin induction of apoptosis of human osteosarcoma cell line U2OS by regulating Bcl-2 and Bax expression in vitro and in vivo. Methods: U2OS cells were treated with different concentrations of formononetin and the proliferation of the cells was measured using an MTT assay. Cell apoptosis was examined by flow cytometry. The levels of miR-375, Bax and Bcl-2 protein expression in treated cells were determined by Western blot and RT-PCR. The antitumor activity of formononetin was also evaluated in vivo in nude mice bearing orthotopic tumor implants. Results: High concentrations of formononetin significantly suppress the proliferation of U2OS cells and induce cell apoptosis. Moreover, compared to control group the expression of Bcl-2 and miR-375 decreases with formononetin in the U2OS cells, while Bax increases. Conclusion: Formononetin has inhibitory effects on the proliferation of U2SO cells, both in vitro and in vivo. This antitumor effect is directly correlated with formononetin concentration.


Sign in / Sign up

Export Citation Format

Share Document