scholarly journals Performance analysis of symmetrical and bidirectional 40 Gbps TWDM-PON employing m-QAM-OFDM modulation with multi-color LDs based VLC system

Author(s):  
Meet Kumari ◽  
Anu Sheetal ◽  
Reecha Sharma

Abstract In this work, a full-duplex time and wavelength division multiplexing-passive optical network (TWDM-PON) system is analysed. Orthogonal frequency division multiplexing (OFDM) with m-quadrature amplitude modulation (m-QAM) is employed to improve the performance of TWDM-PON for downstream and upstream transmission. Simultaneously, multi-color (390–750 nm) laser diodes (LDs) are employed for visible light communication (VLC) using various VLC links to encourage the information rate of fiber/VLC optical network. A TWDM-PON utilizing 16-, 32- and 64-QAM OFDM with ten LDs based VLC system has been analysed for full-duplex multi-color VLC signals of the system. The impact of the LDs input current and high transmission rate in the proposed PON/VLC link has been investigated for m-QAM OFDM modulation. The results show that the 40/40 Gbps 16-, 32- and 64-QAM signals over ten 8000 m VLC links and a 50 km fiber link are successfully transmitted at the modulation input current of 9 mA under bit error rate (BER) of 3.8×10− 3. Also, the proposed system employing 16-, 32- and 64-QAM signals over a 10 km fiber and ten 10 m VLC links provide the maximum transmission rate of 120, 100 and 80 Gbps respectively. Moreover, the measured error vector magnitudes (EVMs) and calculated BER values for 16-QAM downstream and upstream signals, are well below the required FEC limit than high-order modulation formats. Further, the numerical analysis of the proposed system reveals the superiority of the proposed fiber/VLC links.

2019 ◽  
Vol 9 (12) ◽  
pp. 2457 ◽  
Author(s):  
Goki ◽  
Imran ◽  
Porzi ◽  
Toccafondo ◽  
Fresi ◽  
...  

The role of a semiconductor optical amplifier (SOA) for amplifying downstream traffic at optical network terminals (ONT) within a silicon-photonics integrated receiver in a high capacity passive optical network (PON) is investigated. The nearly traveling wave SOA effects are evaluated by considering fabrication and link loss constraints through numerical analysis and experimental validation. The impact of hybrid integration of a SOA chip on a silicon on insulator (SOI) photonic chip using the flip chip bonding technique on SOA design is evaluated through numerical analysis of a multi section cavity model. The performance of the proposed ONT receiver design employing twin parallel SOAs is evaluated experimentally on a 32 × 25 Gb/s OOK WDM transmission system considering cross gain modulation (XGM) and amplified spontaneous emission (ASE) constraints. The XGM impact is evaluated through 32 channel wavelength division multiplexing (WDM) transmission and a likely PON worst case scenario of high channel power difference (~10 dB) between adjacent channels. The impact of ASE is evaluated through the worst-case polarization condition, i.e., when all of the signal is coupled to only one. Successful transmission was achieved in both worst-case conditions with limited impact on performance. SOA results indicate that a maximum residual facet reflectivity of 4 × 10−4 for the chip-bonded device can lead to a power penalty below 2 dB in a polarization-diversity twin SOAs receiver.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Shuai Chen ◽  
Wei Nai ◽  
Fangqi Zhang ◽  
Shaoyin Wang ◽  
Decun Dong ◽  
...  

Wavelength-division-multiplexing passive-optical-network (WDM-PON) has been recognized as a promising solution of the “last mile” access as well as multibroadband data services access for end users, and WDM-RoF-PON, which employs radio-over-fiber (RoF) technique in WDM-PON, is even a more attractive approach for future broadband fiber and wireless access for its strong availability of centralized multiservices transmission operation and its transparency for bandwidth and signal modulation formats. As for multiservices development in WDM-RoF-PON, various system designs have been reported and verified via simulation or experiment till now, and the scheme with multiservices transmitted in each single wavelength channel is believed as the one that has the highest bandwidth efficiency; however, the corresponding mathematical verification is still hard to be found in state-of-the-art literature. In this paper, system design and data transmission performance of a quintuple services integrated WDM-RoF-PON which jointly employs carrier multiplexing and orthogonal modulation techniques, have been theoretically analyzed and verified in detail; moreover, the system design has been duplicated and verified experimentally and the theory system of such WDM-RoF-PON scheme has thus been formed.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Ilavarasan Tamilarasan ◽  
Brindha Saminathan ◽  
Poongundran Selvaprabhu ◽  
Mugelan Ramakrishnan Kuppusamy

AbstractOrthogonal frequency division multiplexing (OFDM) is a special form of multicarrier (MC) modulation technique which is adopted in 4G mobile communication systems. The combination of OFDM with passive optical network (PON) architecture is highly desirable for design of flexible and energy efficient backhaul and backbone networks for 5G systems. An intensive mathematical model for linewidth analysis in OFDM based backhaul (BH) and backbone (BB) systems is proposed. The proposed mathematical model includes fiber dispersion, fiber nonlinear effects, amplified spontaneous emission (ASE) noise, transmitter and receiver noises. The impact of laser linewidth in the developed analytical model is analysed in terms phase rotation term (PRT) and inter-carrier interference (ICI) power. Further, the BER performance of the DD-OFDM system as a function of laser linewidth is also presented. The results of the analytical model solved using MATLAB is compared with virtual photonics integrated (VPI) based simulation results. The results of our proposed model suggest that DD-OFDM would perform better for lower linewidth in dispersion uncompensated (DUC) links and it has no impact on the dispersion compensated (DC) links for BB networks. In BH networks, the system performs better for lower linewidth in both DUC and DC links.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Anil Kumar ◽  
Rajneesh Randhawa

AbstractIn this paper, we have proposed an improved hybrid passive optical network model using wavelength division multiplexing (WDM) and time division multiplexing (TDM) with 96 users in the bidirectional optical fiber networks. The performance is evaluated based on different distances and modulation formats with the help of Q factor, BER and Eye diagram. In the proposed model, the data is successfully transmitted up-to a distance of 96 km with a data rate of 10 Gbits/sec. Comparative analysis of proposed models with respect to other four models are hence put forth.


2018 ◽  
Vol 7 (4) ◽  
pp. 6652
Author(s):  
N. Subhashini ◽  
A. Brintha Therese

With growing number of applications and network traffic, optic fibers are extensively used in the access part of the network. Passive Optical Networks (PON) in particular, Ethernet PON (EPON) networks based on Time Division Multiple Access (TDMA) are more prominently used in many parts of the world. Though Wavelength Division Multiplexing (WDM) PON has its own advantages, considering the cost and utilisation of such networks in the access part makes it less useful. On the other hand, Hybrid PON network combines the advantages of both EPON and WDM PON Networks. The objective of this paper is to identify suitable electrical filters for a 16-channel Hybrid Passive Optical Network with a transmission rate of 10Gbps per channel, by analysing their performance in terms of Q factor and Bit Error Rate. Different filters like the Bessel filter, Gaussian filter, Raised Cosine Filter, Rectangular filter, Butterworth filter, Chebyshev Filter are compared and their performances are evaluated. DB Modulation format that provides a longer reach is used at the transmitter to evaluate the different scenarios and the simulation is carried out using Optisystem.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Kumbirayi Nyachionjeka ◽  
Wellington Makondo

In this paper, the performance and feasibility of a hybrid wavelength division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) system with 128 optical network units (ONUs) is analysed. In this system, triple play services (video, voice and data) are successfully communicated through a distance of up to 28 km. Moreover, we analysed and compared the performance of various modulation formats for different distances in the proposed hybrid WDM/TDM PON. NRZ rectangular emerged as the most appropriate modulation format for triple play transmission in the proposed hybrid PON.


Photonics ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 49
Author(s):  
Lorenzo Combi ◽  
Alberto Gatto ◽  
Pierpaolo Boffi ◽  
Umberto Spagnolini ◽  
Paola Parolari

The evolution of radio access networks is towards a centralized architecture (C-RAN), with massive antenna deployments and large radio-frequency bandwidths. In the next future, traditional optical transport technologies based on digital radio over fiber will no longer be able to support the mobile fronthaul traffic connecting antennas hosted at remote radio units and centralized baseband units. Analog radio over fiber can be selected to support the mobile fronthaul (MFH) network and, in particular, pulse width modulation (PWM) is a viable alternative for analog signal transport. In order to increase the MFH spectral efficiency, we propose to exploit multilevel PWM (M-PWM) in a wavelength division multiplexing-passive optical network (WDM-PON) network, comparing its performance with a conventional 2-level PWM solution. Experimental results show successful transmission over 7.5-km standard single mode fiber (SSMF) of up to 16 aggregated LTE-like 20-MHz signals with 64-QAM on each subcarrier, while up to eight aggregated LTE-like 20-MHz signals with 256-QAM could be supported. M-PWM thus allows either using higher order modulation formats or aggregating a higher number of LTE channels.


2019 ◽  
Vol 41 (1) ◽  
pp. 91-98
Author(s):  
Tu V. M. Pham ◽  
Thang V. Nguyen ◽  
Nga T. T. Nguyen ◽  
Thu A. Pham ◽  
Hien T. T. Pham ◽  
...  

Abstract In this paper, we examine the hybrid optical fiber (OF)/free-space optics (FSO) architecture for a backhaul downlink over a wavelength-division multiplexing passive optical network (WDM-PON). The hybrid backhaul architecture is able to provide not only high-data-rate but also flexibility and quick deployment. The performance analysis is carried out for the hybrid OF/FSO backhaul downlink over a four-wavelength WDM-PON under the effect of four-wave mixing (FWM). The impact of atmospheric turbulence-induced fading and major noise components, including amplifier’s noise, shot noise, beat noise, background noise, and thermal noise, is also taken into account. The numerical results show that, although high transmitted power and amplifier’s gain at the transmitter side help to mitigate the impact of noise and fading, they should be limited to a specific value to avoid the influence of FWM. Therefore, the use of amplifier or avalanche photodiode at the receiver side would be a better solution to keep the bit-error rate (BER) at the low levels.


Sign in / Sign up

Export Citation Format

Share Document