scholarly journals Investigation of Attenuation and Directional Characteristics of Millimeter Wave Propagation in Urban Environment Using Ray Tracing Technique

Author(s):  
Segni Merga Adula ◽  
Feyisa Debo Diba ◽  
Atli Lemma Gebretsadik

Abstract Future high densification wireless networks come with high handoff rates, which require knowledge of mobile speed. Mobile speed estimation is crucial for optimizing handover to reduce call drops and network signaling flow, optimize traffic scheduling, improve quality of service, achieve resource optimization, mobility load balancing, channel quality feedback enhancement, and energy efficiency. In this paper, we present a low complexity mobile speed estimation model using count of peaks and troughs of the received signal envelop. We simulated the model in Matlab® and our result shows that the model has a maximum error of 0.25 m/sec. The model has two advantages. First, it does not require measurement of the received signal power; it only counts envelop peaks and troughs. Second, the model is independent of dc offset inherent in the radio receivers. However, the model has one limitation- it does not give the crossing component of a mobile’s velocity.

Author(s):  
Mingliang Xu ◽  
Qingfeng Li ◽  
Jianwei Niu ◽  
Hao Su ◽  
Xiting Liu ◽  
...  

Quick response (QR) codes are usually scanned in different environments, so they must be robust to variations in illumination, scale, coverage, and camera angles. Aesthetic QR codes improve the visual quality, but subtle changes in their appearance may cause scanning failure. In this article, a new method to generate scanning-robust aesthetic QR codes is proposed, which is based on a module-based scanning probability estimation model that can effectively balance the tradeoff between visual quality and scanning robustness. Our method locally adjusts the luminance of each module by estimating the probability of successful sampling. The approach adopts the hierarchical, coarse-to-fine strategy to enhance the visual quality of aesthetic QR codes, which sequentially generate the following three codes: a binary aesthetic QR code, a grayscale aesthetic QR code, and the final color aesthetic QR code. Our approach also can be used to create QR codes with different visual styles by adjusting some initialization parameters. User surveys and decoding experiments were adopted for evaluating our method compared with state-of-the-art algorithms, which indicates that the proposed approach has excellent performance in terms of both visual quality and scanning robustness.


Author(s):  
Tianqi Jing ◽  
Shiwen He ◽  
Fei Yu ◽  
Yongming Huang ◽  
Luxi Yang ◽  
...  

AbstractCooperation between the mobile edge computing (MEC) and the mobile cloud computing (MCC) in offloading computing could improve quality of service (QoS) of user equipments (UEs) with computation-intensive tasks. In this paper, in order to minimize the expect charge, we focus on the problem of how to offload the computation-intensive task from the resource-scarce UE to access point’s (AP) and the cloud, and the density allocation of APs’ at mobile edge. We consider three offloading computing modes and focus on the coverage probability of each mode and corresponding ergodic rates. The resulting optimization problem is a mixed-integer and non-convex problem in the objective function and constraints. We propose a low-complexity suboptimal algorithm called Iteration of Convex Optimization and Nonlinear Programming (ICONP) to solve it. Numerical results verify the better performance of our proposed algorithm. Optimal computing ratios and APs’ density allocation contribute to the charge saving.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3350 ◽  
Author(s):  
Kittipong Kasantikul ◽  
Dongkai Yang ◽  
Qiang Wang ◽  
Aung Lwin

Oceanographic remote sensing, which is based on the sensitivity of reflected signals from the Global Navigation Satellite Systems (GNSS), so-called GNSS-Reflectometry (GNSS-R), is very useful for the observation of ocean wind speed. Wind speed estimation over the ocean is the core factor in maritime transportation management and the study of climate change. The main concept of the GNSS-R technique is using the different times between the reflected and the direct signals to measure the wind speed and wind direction. Accordingly, this research proposes a novel technique for wind speed estimation involving the integration of an artificial neural network and the particle filter based on a theoretical model. Moreover, particle swarm optimization was applied to find the optimal weight and bias of the artificial neural network, in order to improve the accuracy of the estimation result. The observation dataset of the reflected signal information from BeiDou Geostationary Earth Orbit (GEO) satellite number 4 was used as an input for the estimation model. The data consisted of two phases with I and Q components. Two periods of BeiDou data were selected, the first period was from 3 to 8 August 2013 and the second period was from 12 to 14 August 2013, which corresponded to events from the typhoon Utor. The in situ wind speed measurement collected from the buoy station was used to validate the results. A coastal experiment was conducted at the Yangjiang site located in the South China Sea. The results show the ability of the proposed technique to estimate wind speed with a root mean square error of approximately 1.9 m/s.


Author(s):  
Khac-Khiem Nguyen ◽  
Trong-Thang Nguyen

<p>This research aims to propose an algorithm for controlling the speed of the Direct Current (DC) motor in the absence of the sensor of speed. Based on the initial mathematical model of DC motor, the authors build the dynamic state equation of DC motor, and then build an estimation model to determine the speed of the DC motor without a sensor. The advantages of the proposed method are demonstrated through the closed-loop control model using the PID controller. In order for the results to be objective, we assume that the parameters of the DC motor in the estimation model are not known correctly. The results show that the quality of control in the absence of a sensor is equivalent to the case with the sensor.</p>


Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 130 ◽  
Author(s):  
Dinh Trieu Duong ◽  
Huy Phi Cong ◽  
Xiem Hoang Van

Distributed video coding (DVC) is an attractive and promising solution for low complexity constrained video applications, such as wireless sensor networks or wireless surveillance systems. In DVC, visual quality consistency is one of the most important issues to evaluate the performance of a DVC codec. However, it is the fact that the quality of the decoded frames that is achieved in most recent DVC codecs is not consistent and it is varied with high quality fluctuation. In this paper, we propose a novel DVC solution named Joint exploration model based DVC (JEM-DVC) to solve the problem, which can provide not only higher performance as compared to the traditional DVC solutions, but also an effective scheme for the quality consistency control. We first employ several advanced techniques that are provided in the Joint exploration model (JEM) of the future video coding standard (FVC) in the proposed JEM-DVC solution to effectively improve the performance of JEM-DVC codec. Subsequently, for consistent quality control, we propose two novel methods, named key frame quantization (KF-Q) and Wyner-Zip frame quantization (WZF-Q), which determine the optimal values of the quantization parameter (QP) and quantization matrix (QM) applied for the key and WZ frame coding, respectively. The optimal values of QP and QM are adaptively controlled and updated for every key and WZ frames to guarantee the consistent video quality for the proposed codec unlike the conventional approaches. Our proposed JEM-DVC is the first DVC codec in literature that employs the JEM coding technique, and then all of the results that are presented in this paper are new. The experimental results show that the proposed JEM-DVC significantly outperforms the relevant DVC benchmarks, notably the DISCOVER DVC and the recent H.265/HEVC based DVC, in terms of both Peak signal-to-noise ratio (PSNR) performance and consistent visual quality.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1446 ◽  
Author(s):  
Liang Huang ◽  
Xu Feng ◽  
Luxin Zhang ◽  
Liping Qian ◽  
Yuan Wu

This paper studies mobile edge computing (MEC) networks where multiple wireless devices (WDs) offload their computation tasks to multiple edge servers and one cloud server. Considering different real-time computation tasks at different WDs, every task is decided to be processed locally at its WD or to be offloaded to and processed at one of the edge servers or the cloud server. In this paper, we investigate low-complexity computation offloading policies to guarantee quality of service of the MEC network and to minimize WDs’ energy consumption. Specifically, both a linear programing relaxation-based (LR-based) algorithm and a distributed deep learning-based offloading (DDLO) algorithm are independently studied for MEC networks. We further propose a heterogeneous DDLO to achieve better convergence performance than DDLO. Extensive numerical results show that the DDLO algorithms guarantee better performance than the LR-based algorithm. Furthermore, the DDLO algorithm generates an offloading decision in less than 1 millisecond, which is several orders faster than the LR-based algorithm.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 998
Author(s):  
Yu Xiao ◽  
Gang Qiu ◽  
Yafeng Wang

With the increasingly demand for reliable mobile communication service in the high-speed railway (HSR) system, the service stability of HSR communication is of great concern in recent research. Focusing on ensuring the quality of services (QoS) and system throughput, massive multi-input multi-output (massive MIMO) and beamforming technologies have been widely applied. In this paper, aiming to minimize the communication outage probability (OP) and not to decrease spectrum efficiency (SE) too much, we propose a fast HBF (F-HBF) scheme for HSR communications. The proposed scheme uses a low-complexity beam-searching algorithm to trace high-speed trains in real time. The simulation results verify that the proposed scheme can significantly reduce OP without too much SE degradation.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3445
Author(s):  
Maria Fattorini ◽  
Carlo Brandini

In this article, we discuss possible observing strategies for a simplified ocean model (Double Gyre (DG)), used as a preliminary tool to understand the observation needs for real analysis and forecasting systems. Observations are indeed fundamental to improve the quality of forecasts when data assimilation techniques are employed to obtain reliable analysis results. In addition, observation networks, particularly in situ observations, are expensive and require careful positioning of instruments. A possible strategy to locate observations is based on Singular Value Decomposition (SVD). SVD has many advantages when a variational assimilation method such as the 4D-Var is available, with its computation being dependent on the tangent linear and adjoint models. SVD is adopted as a method to identify areas where maximum error growth occurs and assimilating observations can give particular advantages. However, an SVD-based observation positioning strategy may not be optimal; thus, we introduce other criteria based on the correlation between points, as the information observed on neighboring locations can be redundant. These criteria are easily replicable in practical applications, as they require rather standard studies to obtain prior information.


Author(s):  
Bowen Jiang ◽  
Yuangang Li ◽  
Weixin Yang

At present, China’s air pollution and its treatment effect are issues of general concern in the academic circles. Based on the analysis of the development stages of air pollution in China and the development history of China’s air quality standards, we selected 17 cities of Shandong Province, China as the research objects. By expanding China’s existing Air Quality Index System, the air quality of six major pollutants including PM2.5 and PM10 in 17 cities from February 2017 to January 2020 is comprehensively evaluated. Then, with a forecast model, the air quality of the above cities in the absence of air pollution control policies since June 2018 was simulated. The results of the error test show that the model has a maximum error of 4.67% when simulating monthly assessment scores, and the maximum mean error of the four months is 3.17%. Through the comparison between the simulation results and the real evaluation results of air quality, we found that since June 2018, the air pollution control policies of six cities have achieved more than 10% improvement, while the air quality of the other 11 cities declined. The different characteristics of pollutants and the implementation of governance policies are perhaps the main reasons for the above differences. Finally, policy recommendations for the future air pollution control in Shandong and China were provided.


Sign in / Sign up

Export Citation Format

Share Document