scholarly journals Effects of irrigation and nitrogen on chlorophyll content, dry matter and nitrogen accumulation in sugar beet (Beta vulgaris L.)

Author(s):  
Wang Ning ◽  
Fu Fengzhen ◽  
Ji Jinfeng ◽  
Wang Peng ◽  
He Shuping ◽  
...  

Abstract A two-year field experiment was conducted to analyze the growth conditions, physical features, yield, and nitrogen use efficiency (NUE) of sugar-beet under limited irrigation conditions in northeast of China. A cultivar H003 was used as plant materials; six treatments (C1-C6) were included: C1, no nitrogen applied, rain-fed; C2, 120.00 kg nitrogen hm− 2, rain-fed; C3, no nitrogen applied, hole irrigation for seeding; C4, 120.00 kg nitrogen hm− 2, hole irrigation for seeding; C5, no nitrogen applied, hole irrigation for seeding; and C6, 120.00 kg nitrogen hm− 2, hole irrigation for seeding, and irrigation at foliage rapid growth stage. The irrigation supply was only 500 mL/plant once. Results showed C6 showed the highest chlorophyll content, dry matter accumulation, yield, etc. and had the best NUE among all the treatments. In conclusion, under the routine fertilization conditions of northeast of China, the cultivation measure of hole irrigation 500 mL/plant for seeding combined with irrigation 500 mL/plant at foliage rapid growth stage greatly improved sugar-beet yield and NUE.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ning Wang ◽  
Fengzhen Fu ◽  
Hongrong Wang ◽  
Peng Wang ◽  
Shuping He ◽  
...  

AbstractA 2-year field experiment was conducted to analyze the growth conditions, physical features, yield, and nitrogen use efficiency (NUE) of sugar-beet under limited irrigation conditions in northeast of China. A cultivar H003 was used as plant materials; six treatments (C1–C6) were included: C1, no nitrogen applied, rain-fed; C2, nitrogen (120.00 kg ha−1), rain-fed; C3, no nitrogen applied, hole irrigation for seeding; C4, nitrogen (120.00 kg ha−1), hole irrigation for seeding; C5, no nitrogen applied, hole irrigation for seeding; and C6, nitrogen (120.00 kg ha−1), hole irrigation for seeding, and irrigation at foliage rapid growth stage. The irrigation supply was only 500 mL/plant once. Results showed C6 showed the highest chlorophyll content, dry matter accumulation, yield, etc. and had the best NUE among all the treatments. In conclusion, under the routine fertilization conditions of northeast of China, the cultivation measure of hole irrigation 500 mL/plant for seeding combined with irrigation 500 mL/plant at foliage rapid growth stage greatly improved sugar-beet yield and NUE.


1996 ◽  
Vol 14 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Ricardo A. Marenco ◽  
Nei F. Lopes

To investigate the effects of trifluralin, chlorimuron and clomazone on morphology and assimilate partitioning during soybean development, plants were grown in a greenhouse and sampled at 14-day intervals. Clomazone reduced stem and leaf dry matter accumulation at 14 days after emergence (DAE), while trifluralin and chlorimuron reduced plant part dry matter accumulation up to 28 DAE. The number of leaves, plant height, mass and number of pods and seeds, and the shoot/root ratio were not influenced by the herbicides. Roots, stems and leaves were the preferred sinks up to the R2 growth stage, while pods and developing seeds became the preferred sinks later. This order was not altered by the herbicides.


2021 ◽  
Vol 25 (02) ◽  
pp. 513-520
Author(s):  
Ning Wang

The present study investigated the effects of irrigation and phosphorus fertilizer on dry matter accumulation and phosphorus use efficiency in sugar beet for two growing seasons during 2016 and 2017, using H003 cultivar. The experiment was comprised of four treatments including NP0K-rainfed (C1), NPK-rainfed (C2), NP0K-irrigation (C3), and NPK-irrigation (C4) using 105 kg P ha-1 compared with 0 kg P ha-1. The results showed that during the whole growth period of crop, chlorophyll contents was in the order of C4 > C3 > C2 > C1. The sugar contents were higher in irrigation treatments than rain-fed. At harvest, 105 kg P ha-1 under NPK-irrigation treatment had the highest sugar yield up to 11.59 and 10.64 t∙hm-2 in 2016 and 2017 respectively. The percent increase in yield was 20.19–27.07%, 15.79–21.62% and 14.57–14.93% than C1, C2 and C3 treatments, respectively. In C4 treatment, the dry matter accumulation in roots and leaves were 25.36 and 27.48 t∙hm-2, 9.22 and 10.67 t∙hm-2 in 2016 and 2017 respectively, with 0.39% and 5.53, 11.61 and 25.02% higher than in C2 treatment. The phosphorus accumulation in roots of C4 treatment at harvesting was 9.46 and 9.97 t∙hm-2 while phosphorus accumulation in leaves of same treatment was 3.58 and 3.80 t∙hm-2 in 2016 and 2017, respectively. In irrigation treatments, the utilization efficiency of phosphate fertilizer was 16.97 and 17.33% in 2016 and 2017, respectively, with 25.52 and 29.02% higher than corresponding rainfed treatment, indicating that irrigation could significantly improve the utilization efficiency of P fertilizer. © 2021 Friends Science Publishers


2008 ◽  
Vol 19 (2) ◽  
pp. 173 ◽  
Author(s):  
L. MUSTONEN ◽  
E. WALLIUS ◽  
T. HURME

The effects various rates of nitrogen application on accumulation of dry matter and nitrogen in potato (Solanum tuberosum L.) were studied during a short growing period of 140–180 days, at MTT Agrifood Research Finland in 2000–2001. The treatments were 0, 60 and 120 kg N ha-1 and the potato cultivars tested were Van Gogh and Nicola. Four successive harvests were made during the course of the experiment to monitor changes in the accumulation of dry matter and nitrogen over the season. Applications of nitrogen substantially increased haulm dry matter accumulation and to an even greater extent their nitrogen contents. The highest dry matter values were generally registered at 120 kg N ha-1. Dry matter and nitrogen content of haulms started to decline during the later part of season and most nitrogen was relocated to tubers. The results suggest that an application of only 60 kg N ha-1 was sufficient to promote rapid canopy development and there were only small reductions in dry matter and nitrogen accumulation until late in the season when the canopy started to senesce as nitrogen supply diminished. Tuber yield, plant dry matter and nitrogen accumulation at maturity were related to crop nitrogen supply. Although application of the high rate, 120 N kg ha-1, resulted in a significant increase in dry matter accumulation, this was not reflected in the profit because the higher nitrogen application reduced dry matter content of tubers by 2.6% in 2000 and by 1.1% in 2001 relative to the use of 60 kg N ha-1. Apparent fertilizer nitrogen recovery values on a whole plant basis ranged from 53 to 75%. The proportion of fertilizer recovered in tubers clearly declined with increase in nitrogen supply.;


Poljoprivreda ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 32-39
Author(s):  
Ivana Varga ◽  
Zdenko Lončarić ◽  
Milan Pospišil ◽  
Mirta Rastija ◽  
Manda Antunović

This study analyzes the dynamics of sugar beet root, crown, and leaves fresh and dry matter (FM and DM, respectively) accumulation per plant and their mass ratio at different plant densities and nitrogen fertilization. The biennial field trials were set as four different planting densities (60,000, 80,000, 100,000 and 140,000 plants ha-1) and three methods of nitrogen application in spring: control – without nitrogen fertilization (N0), presowing only (N1), and presowing with topdressing (N2). Close to the maturation, the mean DM of the whole root, crown, and leaves on September 20, 2014 amounted to 28.8, 7.3 and 4.0 t ha-1, respectively, whereas it amounted to 20.7, 4.1 and 2.3 t ha-1 in 2015, respectively. Moreover, with regard to the plant densities, the highest root DM was at 140,000 and 100,000 (31.6 t ha-1 in 2014 and 22.4 t ha-1 in 2015), compared to the wider plant densities of 80,000 and 60,000 plants ha-1 (22.4 t ha-1 in 2014 and 18.1 t ha-1 in 2015). Nitrogen fertilization positively influenced on dry matter accumulation, but it was different within the years. On September 20, 2014, a presowing fertilization (N1) increased the root DM by 17%, compared to the control, whereas in 2015 the presowing with topdressing (N2) increased the root DM by 30%. The root-to-leaves FM ratio amounted to 1:3.9 on May 30, 2014, whereas it amounted to 1:0.1 on September 20, 2014. The leaves FM was at its largest on June 20, 2015, when the root-to-leaves ratio amounted to 1:1.1, and gradually decreased to 1:0.1 on September 20, 2015.


1994 ◽  
Vol 74 (3) ◽  
pp. 471-477 ◽  
Author(s):  
D. E. McCullough ◽  
M. Mihajlovic ◽  
A. Aguilera ◽  
M. Tollenaar ◽  
Ph. Girardin

The response of an old and a new maize (Zea mays L.) hybrid to N supply was evaluated under controlled-environment conditions. An old hybrid (Pride 5) and a new hybrid (Pioneer 3902) were grown at three N levels (15, 2.5, and 0.5 mM N), and development and dry matter accumulation were measured at the 4-, 8-, and 12-leaf stage. Leaf chlorophyll was monitored from the 8- to 12-leaf stage, and leaf photosynthesis, stomatal conductance, and leaf chlorophyll fluorescence were measured at the 12-leaf stage. Rate of dry matter accumulation decreased with declining N supply. In contrast, decreasing N supply progressively increased the duration of the 4- to 8-leaf phase and the 8- to 12-leaf phase. As a consequence, total dry matter at the 12-leaf stage did not differ among N levels. The rate of leaf appearance of the old hybrid (Pride 5) was proportionately more reduced under low N than that of the new hybrid (Pioneer 3902). Similarly, the reduction in crop growth rate during the 8- to 12-leaf stage at the lowest N level was 46% for Pride 5 and 24% for Pioneer 3902. Leaf chlorophyll content was higher for Pride 5 than for Pioneer 3902 at high N levels, but leaf chlorophyll content declined significantly more rapidly in Pride 5 than in Pioneer 3902 when N stress increased. Leaf carbon assimilation rates were 4–27% higher for the new hybrid, with the largest differences occurring at low N levels. Collectively, results of this study show that the old hybrid (Pride 5) was more sensitive to N stress during early development than the new hybrid (Pioneer 3902). Key words:Zea mays L., nitrogen stress tolerance, chlorophyll content, photosynthesis, chlorophyll fluorescence


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2310
Author(s):  
Yang Yang ◽  
Wenxin Zha ◽  
Kailei Tang ◽  
Gang Deng ◽  
Guanghui Du ◽  
...  

Hemp is a multipurpose crop that is cultivated worldwide for fiber, oil, and cannabinoids. Nitrogen (N) is a key factor for getting a higher production of hemp, but its application is often excessive and results in considerable losses in the soil–plant–water continuum. Therefore, a rational N supply is important for increasing N efficiency and crop productivity. The main objective of this paper was to determine the responses of four hemp cultivars to different levels of exogenous-N supply as nutrient solution during the vegetative growing period. The experiment was conducted at Yunnan University in Kunming, China. Yunma 1, Yunma 7, Bamahuoma, and Wanma 1 were used as the experimental materials, and five N supplying levels (1.5, 3.0, 6.0, 12.0, and 24.0 mmol/L NO3-N in the nutrient solution) were set by using pot culture and adding nutrient solution. The root, stem, and leaf of the plant were sampled for the determination of growth indexes, dry matter and N accumulation and distribution, and physiological indicators. The plant height, stem diameter, plant dry weight, and plant N accumulation of four hemp cultivars were significantly increased with the increase in exogenous-N supply. Root/shoot dry weight ratios, stem mass density, and N use efficiency decreased significantly with the increase in exogenous-N supply. Nitrogen accumulation, chlorophyll content, soluble protein content, and nitrate reductase activity in leaves were increased with the increase in exogenous-N supply. Among the four indexes, the increase in N accumulation was more than the increase in NR activity. The activities of superoxide dismutase and peroxidase in leaves were increased first and then decreased with the increase in exogenous-N supply, with the maximum value at N 6.0 mmol/L, while the content of malondialdehyde in leaves increased significantly when the level of exogenous-N supply exceeded 6.0 mmol/L. These results revealed that increasing the exogenous-N supply could improve the plant growth, dry matter accumulation, and N accumulation in hemp during the vegetative growth period, but N supply should not exceed 6.0 mmol/L. Among four hemp cultivars, Wanma 1 performed well at 6.0 mmol/L N application.


Sign in / Sign up

Export Citation Format

Share Document