scholarly journals Effect of Nitrogen Supply on Growth and Nitrogen Utilization in Hemp (Cannabis sativa L.)

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2310
Author(s):  
Yang Yang ◽  
Wenxin Zha ◽  
Kailei Tang ◽  
Gang Deng ◽  
Guanghui Du ◽  
...  

Hemp is a multipurpose crop that is cultivated worldwide for fiber, oil, and cannabinoids. Nitrogen (N) is a key factor for getting a higher production of hemp, but its application is often excessive and results in considerable losses in the soil–plant–water continuum. Therefore, a rational N supply is important for increasing N efficiency and crop productivity. The main objective of this paper was to determine the responses of four hemp cultivars to different levels of exogenous-N supply as nutrient solution during the vegetative growing period. The experiment was conducted at Yunnan University in Kunming, China. Yunma 1, Yunma 7, Bamahuoma, and Wanma 1 were used as the experimental materials, and five N supplying levels (1.5, 3.0, 6.0, 12.0, and 24.0 mmol/L NO3-N in the nutrient solution) were set by using pot culture and adding nutrient solution. The root, stem, and leaf of the plant were sampled for the determination of growth indexes, dry matter and N accumulation and distribution, and physiological indicators. The plant height, stem diameter, plant dry weight, and plant N accumulation of four hemp cultivars were significantly increased with the increase in exogenous-N supply. Root/shoot dry weight ratios, stem mass density, and N use efficiency decreased significantly with the increase in exogenous-N supply. Nitrogen accumulation, chlorophyll content, soluble protein content, and nitrate reductase activity in leaves were increased with the increase in exogenous-N supply. Among the four indexes, the increase in N accumulation was more than the increase in NR activity. The activities of superoxide dismutase and peroxidase in leaves were increased first and then decreased with the increase in exogenous-N supply, with the maximum value at N 6.0 mmol/L, while the content of malondialdehyde in leaves increased significantly when the level of exogenous-N supply exceeded 6.0 mmol/L. These results revealed that increasing the exogenous-N supply could improve the plant growth, dry matter accumulation, and N accumulation in hemp during the vegetative growth period, but N supply should not exceed 6.0 mmol/L. Among four hemp cultivars, Wanma 1 performed well at 6.0 mmol/L N application.

2004 ◽  
Vol 84 (2) ◽  
pp. 589-598 ◽  
Author(s):  
B. J. Zebarth ◽  
G. Tai ◽  
R. Tarn ◽  
H. de Jong ◽  
P. H. Milburn

One approach for reducing the contribution of potato (Solanum tuberosum L.) production to nitrate contamination of groundwater is to develop cultivars which utilize N more efficiently. In this study, variation in N use efficiency (NUE; dry matter production per unit crop N supply) characteristics of 20 commercial potato cultivars of North American and European origin were evaluated in 2 yr. Cultivars were grown with or without application of 100 kg N ha-1 as ammonium nitrate banded at planting. The recommended within-row spacing was used for each cultivar and no irrigation was applied. Plant dry matter and N accumulation were determined prior to significant leaf senescence. Crop N supply was estimated as fertilizer N applied plus soil inorganic N measured at planting plus apparent net soil N mineralization. Nitrogen use efficiency decreased curvilinearly with increasing crop N supply. Nitrogen use efficiency was lower for early-maturing cultivars compared to mid-season and late-maturing cultivars. A curvilinear relationship was obtained between plant dry matter accumulation and plant N accumulation using data for all cultivars. Deviations from this relationship were interpreted as variation in N utilization efficiency (NUtE; dry matter accumulation per unit N accumulation). Significant differences in NUtE were measured among cultivars of similar maturity. Nitrogen uptake efficiency (NUpE; plant N content per unit crop N supply) and soil nitrate concentration measured at plant harvest were uniformly low for all cultivars when crop N supply was limited, but varied among cultivars when N was more abundant. This suggests that potato cultivars vary more in terms of N uptake capacity (plant N accumulation in the presence of an abundant N supply) than in terms of NUpE. Key words: Solanum tuberosum, N mineralization, dry matter accumulation, N accumulation, N utilization efficiency


2011 ◽  
Vol 39 (2) ◽  
pp. 196 ◽  
Author(s):  
Nurdilek GULMEZOGLU ◽  
Nihal KAYAN

This research aimed to determine the effect of different levels of nitrogen (N) on the growth, yield and the N accumulation of lentil plants grown under rain-fed conditions. The two-year field experiments with lentil were arranged in a randomised complete block design. Nitrogen was applied at four rates (0, 20, 40 and 60 kg ha-1) and all of the plots received half of the N rates before sowing in October and the remaining N rate in spring. The plants were harvested in the following stages: the first multifoliate leaf unfolding at the fifth node (V5) full seed or seed on nodes 10-13 that fill pod cavities (R6) and maturity (R8). The dry weight and N concentration of the shoot (leaf+stem), pod wall, and seed were then measured. It has been found that N application significantly affected the lentil characteristics. The maximum biomass accumulation and N accumulation were obtained at R6, and the N fertiliser had a positive effect on the seed weight and N accumulation. It can be suggest that 20 kg N ha-1 will increase the per-plant dry matter and N accumulation of the seeds under rain-fed conditions.


2011 ◽  
Vol 49 (No. 1) ◽  
pp. 36-47 ◽  
Author(s):  
N. Przulj ◽  
V. Momčilović

During growth, kernel of cereals can be provided with carbohydrate and nitrogen (N) from the translocation of pre-anthesis accumulated reserves stored either in the vegetative plant parts or from current assimilation during kernel development. This study was conducted to assess the effects of nitrogen level and cultivars on dry matter and N accumulation and mobilization during pre-anthesis and post-anthesis. Twenty two-rowed spring barley (Hordeum vulgare L.) cultivars were grown on a non-calcareous chernozem soil in four growing seasons (1995–1998) atNovi Sad (45°20'N, 15°51'E,86 m a.s.l.) at two nitrogen levels. Dry matter accumulation before anthesis ranged from less than 50% in unfavorable to 90% in favorable growing conditions. Dry matter translocation occurred in favorable growing conditions only. Pre-anthesis accumulated N represented 57–92% and 54–129% of total N at maturity at the low and high N levels, respectively. Translocated N represented 41–85% and 37–153% of grain N at the low and high N level, respectively. N losses occurred in favorable growing conditions when anthesis N exceeded 150 kg/ha. N accumulation during grain filling was in negative correlation with dry matter and N accumulation before anthesis. The N harvest index was 0.57–0.63 and 0.71–0.74 in unfavorable and favorable growing conditions, respectively. Selection of genotypes with a higher ability of pre-anthesis reserve utilization or genotypes with longer leaf area duration after anthesis may be two possible solutions in spring barley breeding for Mediterranean growing conditions.


1988 ◽  
Vol 68 (4) ◽  
pp. 935-940 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. W. BRUULSEMA

The response of rate and duration of kernel dry matter accumulation to temperatures in the range 10–25 °C was studied for two maize (Zea mays L.) hybrids grown under controlled-environment conditions. Kernel growth rates during the period of linear kernel growth increased linearly with temperature (b = 0.3 mg kernel−1 d−1 °C−1). Kernel dry weight at physiological maturity varied little among temperature treatments because the increase in kernel growth rate with increase in temperature was associated with a decline in the duration of kernel growth proportional to the increase in kernel growth rate.Key words: Zea mays L, period of linear kernel dry matter accumulation, controlled-environment conditions, kernel growth rate


1991 ◽  
Vol 116 (6) ◽  
pp. 981-986 ◽  
Author(s):  
F.J.A. Niederholzer ◽  
R.M. Carlson ◽  
K. Uriu ◽  
N.H. Willits ◽  
J.P. Pearson

A study was undertaken to determine the seasonal dynamics of leaf and fruit K content and the influence of tree K status and fruit growth on leaf and fruit K accumulation rates in French prune (Prunus domestics L. cv. d'Agen). Mature trees in a commercial orchard were treated with various rates of K2 SO4. (O to ≈20 kg/tree) in the fall. Fruit dry weight yield per tree at harvest and fruit K content were higher for high-K trees, but fruit percent K (by dry weight) was ≈1.0% for all trees. Leaf scorch and subsequent abscission severely reduced the canopy of K-deficient trees. Significant positive linear relationships between leaf and fruit K accumulation rates existed for the periods of 28 Apr.-28 May (May) and 28 May-7 July (June). A significant negative linear relationship existed between these two criteria from 7 July-3 Aug. (July). May (0.237 mg K per fruit-day) and July (0.267 mg K per fruit-day) mean fruit K accumulation rates were similar, but both were significantly higher (P = 0.001) than those for June (0.140 mg K per fruit-day). Mean leaf K accumulation rates for May (- 0.007 mg K per leaf-day) and July (-0.010 mg K per leaf-day) were similar, but both were significantly (P = 0.001) less than for June (0.005 mg K per leaf-day). Potassium per fruit accumulation was highest in trees with highest K status. Periods of net leaf K efflux and influx did not precisely correlate with fruit growth stages measured by fruit dry weight. The period of lowest fruit K accumulation (28 May-7 July) coincided with the period of maximum dry matter accumulation by the kernel. After 7 July, all increases in fruit dry weight and K content were due to mesocarp growth.


1989 ◽  
Vol 25 (3) ◽  
pp. 349-355 ◽  
Author(s):  
S. S. Parihar ◽  
R. S. Tripathi

SUMMARYThe response of chickpea to irrigation and phosphorus was studied at Kharagpur in Eastern India. Irrigation scheduling was based on the ratio between irrigation water applied and cumulative pan evaporation (ID/CPE), and had little effect on dry matter accumulation. Increasing the frequency and amount of irrigation reduced the number and dry weight of nodules per plant, which increased to a maximum 70 days after sowing and then declined. Irrigation significantly reduced grain yield as a result of excessive vegetative growth at the expense of pod formation. Application of phosphorus promoted nodulation and increased both nodule dry weight and the concentration of N, P and K in grain and stover. Uptake of N, P and K by the crop was also increased.


1985 ◽  
Vol 65 (4) ◽  
pp. 867-877 ◽  
Author(s):  
LEONARD SAARI ◽  
SEPPO O. SALMINEN ◽  
ROBERT D. HILL

Developing triticale, wheat and rye grains were studied from 6 to 42 days postanthesis with respect to levels of sucrose and sucrose synthase activity. These were compared with levels of glucose and hexokinase activity as well as changes in dry weight and water content. Dry matter accumulation was linear in all cultivars and ceased at 26–34 days postanthesis, depending on the cultivar. Sucrose synthase activity was low in all tested cultivars at 3 days postanthesis and increased to near maximum levels by 15 days postanthesis. With the exception of triticale 6A190, maximum sucrose synthase activities were approximately 12 m units per seed and did not vary between cultivars. Triticale 6A190 had a maximum sucrose synthase activity of 16.5 m units per seed which occurred at about 21 days postanthesis. Sucrose synthase activity declined at maturity. Sucrose levels varied throughout kernel development. The extent of the variation differed amongst the tested cultivars. Triticale 6A190 had large fluctuations in sucrose level. Sucrose content changed from 1 mg per seed at day 12 to less than 0.1 mg/seed at day 18 to greater than 1 mg per seed at day 28. Hexokinase activity increased throughout kernel development with no substantial decline of activity at maturity. Glucose levels were highest during early kernel development and declined toward maturity. The variations in sucrose and sucrose synthase in triticale 6A190 suggest a malfunction in the metabolism of the line during kernel development. No direct relationship could be established, however, between these abnormalities and kernel shrivelling in 6A190.Key words: Sucrose, sucrose synthase, kernel development, triticale, wheat, rye, hexokinase


1979 ◽  
Vol 59 (3) ◽  
pp. 603-626 ◽  
Author(s):  
C. A. CAMPBELL ◽  
H. R. DAVIDSON

The effects of early moisture stress [tillering (Tg) to last leaf visible (LLV)], late moisture stress [LLV to anthesis (AN)], and three rates of N fertilizer (44, 88 and 132 kg N/ha) on the development and moisture use characteristics of spring wheat (Triticum aestivum L. ’Manitou’) were determined under simulated irrigation in the growth chamber at day/night temperatures of 27 °C/12 °C (T27/12) and 22 °C/12 °C (T22/12). Plant height was unaffected by N and by early stress, but was reduced by late stress. Number of tillers increased until LLV, then decreased sharply and remained constant to maturity. More tillers were initiated at T27/12 than at T22/12, but by maturity there was little difference. Leaf blade photosynthetic area reached its maximum at LLV, while the non-leaf blade photosynthetic area reached its maximum at AN and constituted 75% of the total photosynthetic area at the milk dough stage. Heads comprised no more than 9% of the photosynthetic area at any time. Total plant matter accumulated sigmoidally, but at T27/12 and low N rates, plants lost total dry weight after the milk dough stage. Dry matter of the vegetative plant parts increased until the milk dough stage, then stems in particular, and roots to a lesser extent, lost weight. Head weight increased linearly at about 17.5 mg/head/day. Dry matter accumulation was directly proportional to N applied, inversely related to temperature, temporarily retarded by early stress and markedly reduced by late stress. Although stems were the dominant vegetative dry matter sink, leaves were the dominant N sink. A combination of high temperature, high N and moisture stress resulted in a temporary loss of N from the plants between LLV and the milk dough stage. As maturation proceeded, N assimilates appeared to move from leaves to roots into stems and thence into heads. The average rate of N accumulation in the heads was 0.22 and 0.27 mg/head/day at T22/12 and T27/12, respectively. Some N was lost by denitrification. The amount and rate of evapotranspiration were directly proportional to N applied and in general inversely related to moisture stress. The rate of moisture use was generally more rapid at T27/12, but the amount used was no different from that at T22/12. Plants stressed early recovered and used water at the same rate as unstressed plants, but plants stressed late did not recover.


1988 ◽  
Vol 28 (1) ◽  
pp. 99 ◽  
Author(s):  
MJ Blumenthal ◽  
VP Quach ◽  
PGE Searle

The effect of soybean population density on soybean yield, nitrogen accumulation and residual nitrogen was examined at Camden, N.S.W. (34�S.). In the first experiment, treatments were soybeans (cv. Ransom) at 50, 100, 200 and 400 x 103 plants ha-1; maize (cv. XL66); and a weed-free fallow. Total dry matter yields of tops and grain yields were highest at 200x 103 plants ha-1 (6214 and 3720 kg ha-1, respectively). The yield component most affected by population density was number of branches per plant, with values decreasing with increasing population density. The proportion of unfilled pods was highest at the highest population density. Total nitrogen (N) accumulation in the tops and in the grain was also at a maximum at 200x 103 plants ha-1. The rate of dry matter accumulation declined during pod filling at all population densities. N accumulation continued at high rates throughout the growing season except in the 400x 103 plants ha-1 population. There was a trend for residual dry matter and N in residues to increase with increasing population density. After grain and forage harvest of the first experiment, a crop of wheat (cv. Kite) was sown over the whole area to determine residual N available at anthesis and at maturity (experiment 2). The values of N accumulation in the wheat at maturity were 24 kg N ha-l for the maize treatment, 40-60 kg N ha-l for the soybean treatments and 69 kg N ha-1 for the fallow treatment. Grain yield and grain N followed the pattern of dry matter production and N accumulation at final harvest. The data suggest that soybean depletes soil N to a lesser extent than does maize. For the soybean treatments, there was a trend of increasing residual N at the 3 highest population densities (40-60 kg N ha-1). This was probably a result of an increase in N in leaf fall and in decaying tops and roots at the highest population density. The high value (57 kg N ha-l) at the lowest population density may be due to soybean plants at this density not using as much soil N as the other soybean treatments. No benefit in residual N was gained from planting soybeans at a density beyond the optimum for grain yield when residues were removed by forage harvesting.


Sign in / Sign up

Export Citation Format

Share Document