scholarly journals MAP kinase phosphatase MKP-1 regulates p-ERK1/2 signaling pathway with fluoride treatment

2020 ◽  
Author(s):  
Lin Zhao ◽  
Jiali Su ◽  
Sijia Liu ◽  
Yang Li ◽  
Tao Li ◽  
...  

Abstract Background Dental fluorosis is characterized by hypomineralization of tooth enamel caused by ingestion of excessive fluoride during enamel formation. Excess fluoride could have effects on the ERK signaling, which is essential for the ameloblasts differentiation and tooth development. MAP kinase phosphatase-1 (MKP-1) plays a critical role in regulating ERK related kinases. However, the role of MKP-1 in ameloblast and the mechanisms of MKP-1/ERK signaling in the pathogenesis of dental fluorosis are incompletely understood. Results Here, we adopted an in vitro fluorosis cell model using murine ameloblasts-like LS8 cells by employing sodium fluoride (NaF) as inducer. Using this system, we demonstrated that fluoride exposure led to an inhibition of p- MEK and p-ERK1/2 with a subsequent increase in MKP-1 expression in a dose-dependent manner. We further identified, under high dose fluoride, MKP-1 acted as a negative regulator of the fluoride-induced p-ERK1/2 signaling, leading to downregulation of CREB, c-myc, and Elk-1. Conclusion Our results identify a novel MKP-1/ERK signaling mechanism that regulates dental fluorosis and provide a framework for studying the molecular mechanisms of intervention and fluorosis remodeling under normal and pathological conditions. MKP-1 inhibitors may prove to be a benefit therapeutic strategy for dental fluorosis treatment.

2008 ◽  
Vol 197 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Bao-Wei Wang ◽  
Hang Chang ◽  
Peiliang Kuan ◽  
Kou-Gi Shyu

Angiotensin II (AngII) plays a critical role in cardiac remodeling and promotes cardiac myocyte hypertrophy. Myostatin, a negative regulator of muscle growth, is increased in hypertrophied and infarcted heart. The direct effect of AngII on cardiac myocyte myostatin expression has not been previously investigated. We hypothesized that myostatin may act as a cardiac endocrine inhibitor for AngII. AngII-induced myostatin protein expression in cultured rat neonatal cardiomyocytes was dose-dependent. AngII significantly increased myostatin protein and mRNA expression in a time-dependent manner. Addition of losartan, SB203580, or p38 siRNA 30 min before AngII stimulation significantly blocked the increase of myostatin protein by AngII. AngII significantly increased phosphorylation of p38 while SB205380 and losartan attenuated the phosphorylation of p38 induced by AngII. AngII increased, while myostatin-Mut plasmid, SB203580, losartan, and myocyte enhance factor 2 (MEF-2) antibody abolished the myostatin promoter activity. Co-stimulation with myostatin and AngII significantly inhibited the protein synthesis induced by AngII. In conclusion, AngII enhances myostatin expression in cultured rat neonatal cardiomyocytes. The AngII-induced myostatin is mediated through p38 MAP kinase and MEF-2 pathway.


Author(s):  
Yiping Hu ◽  
Juan He ◽  
Lianhua He ◽  
Bihua Xu ◽  
Qingwen Wang

AbstractTransforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.


2019 ◽  
Vol 36 (4) ◽  
pp. 301-313
Author(s):  
Chenjian Song ◽  
Lingjing Liu ◽  
Junjie Chen ◽  
Yiran Hu ◽  
Jingli Li ◽  
...  

AbstractParticulate matter (PM) is an environmental pollutant closely associated with human airway inflammation. However, the molecular mechanisms of PM-related airway inflammation remains to be fully elucidated. It is known that COX-2/PGE2 play key roles in the pathogenesis of airway inflammation. Filaggrin is a transmembrane protein contributing to tight junction barrier function. As such, Filaggrin prevents leakage of transported solutes and is therefore necessary for the maintenance of epithelial integrity. The objective of the present study was to investigate the regulatory mechanisms of COX-2/PGE2 and Filaggrin upon PM exposure both in vivo and in vitro. C57BL/6 mice received intratracheal instillation of PM for two consecutive days. In parallel, human bronchial epithelial cells (HBECs) were exposed to PM for 24 h. PM exposure resulted in airway inflammation together with upregulation of COX-2/PGE2 and downregulation of Filaggrin in mouse lungs. Corresponding dysregulation of COX-2/PGE2 and Filaggrin was also observed in HBECs subjected to PM. PM exposure led to the phosphorylation of ERK, JNK, and PI3K signaling pathways in a time-dependent manner, while blockade of PI3K with the specific molecular inhibitor LY294002 partially reversed the dysregulation of COX-2/PGE2 and Filaggrin. Moreover, pretreatment of HBECs with NS398, a specific molecular inhibitor of COX-2, and AH6809, a downstream PGE2 receptor inhibitor, reversed the downregulation of Filaggrin upon PM exposure. Taken together, these data demonstrated that the PI3K signaling pathway upregulated COX-2 as well as PGE2 and acted as a pivotal mediator in the downregulation of Filaggrin.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1330-1330
Author(s):  
David N. Haylock ◽  
Genevieve A. Whitty ◽  
Brenda Williams ◽  
Melonie J. Storan ◽  
Susie K. Nilsson

Abstract Osteoblasts are a key cellular component of the hemopoietic stem cell (HSC) niche and directly regulate the HSC pool. Molecules synthesised by osteoblasts both promote or inhibit HSC proliferation. Osteopontin (Opn) is an osteoblast produced, RGD containing protein with roles in cell adhesion and migration. Until recently, the role of Opn in hemopoiesis was seen as restricted to the regulation of bone turnover. However, from analysis of hemopoiesis in the Opn null mouse, we have demonstrated that Opn plays a critical role in regulating the HSC pool. Furthermore Opn is critical in trans-marrow migration and lodgement of HSC within the BM after transplantation. When added to in vitro HSC cultures, exogenous thrombin-cleaved Opn also inhibits cell proliferation and potently suppresses HSC differentiation. We have now demonstrated that this interaction occurs in an RGD-independent manner via the cryptic SVVYGLR epitope revealed on the N-terminal fragment of Opn following thrombin cleavage. This epitope has previously been shown to bind to α4β1 and α9β1. HSC are known to express α4β1, but we have now shown that within the HSC pool this occurs in a differential manner, mimicking that of CD38, with more committed CD34+CD38+ cord blood progenitors having the highest levels of expression. In addition, we have shown the previously unrecognised characteristic of human marrow and cord blood HSC, the expression of α9β1, which also occurs in a differential manner, but mimicking CD34. Expression of α9β1 is highest on cord blood CD34+CD38− cells, a population highly enriched for HSC. Using the synthetic SVVYGLR peptide in culture, we re-capitulated the thrombin-cleaved Opn induced suppression of HSC differentiation in a dose dependent manner. Antibody blocking experiments demonstrated that binding to this peptide was occurring through both α4β1 and α9β1. In contrast, suppression of HSC proliferation and differentiation did not occur through the upstream alternate α4β1 binding site. Furthermore, we have now demonstrated endogenous binding of Opn to α4β1 and α9β1 to cord blood HSC in vivo. Together, these data provide strong evidence that Opn is an important component of the HSC niche which acts as a physiological negative regulator. Furthermore, our studies identify the previously unrecognised characteristic of HSC, the expression of α9β1, which together with α4β1 provides two receptors on HSC with differing expression signatures and potentially a mechanism for fine tunning the physiological effects of Opn.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2193-2193
Author(s):  
Min Zhang ◽  
James C. Moore ◽  
Je Ko ◽  
Wuxia Fu ◽  
Sharmila Prabhu ◽  
...  

Abstract The molecular mechanisms which mediate progression of chronic phase (CP) CML to accelerated and blast phase (BP) disease remain unclear, although one feature that correlates with progression is increased expression of the Bcr-Abl protein itself (Barnes et al., Can. Res. 2005). Increased Bcr-Abl expression is likely to contribute to the more aggressive behavior of BP disease, but the downstream factors that are dysregulated by the increased amounts of Bcr-Abl protein remain to be determined. In these studies we turned our attention to eIF4E since forced expression of eIF4E is transforming, and because increased levels of eIF4E have been found in BP but not CP CML (Topisirovic et al., Mol. Cell. Bio. 2003). eIF4E plays a critical role in cap-dependent translation and allows recruitment of the translation machinery to mRNA. eIF4E is phosphorylated at Ser209, and phosphorylation correlates with exposure to growth factors and increased cap-dependent translation. Using a panel of primary CML cells representing patients at various stages of disease, we confirmed that both Bcr-Abl and eIF4E protein levels were elevated in BP samples compared to those in CP, and furthermore that phosphorylation at Ser209 was dependent on Bcr-Abl kinase activity in BP but not CP samples. We next went on to explore the role of eIF4E phosphorylation in BP CML. Because eIF4E is exclusively phosphorylated at Ser209 by the MAPK signal-integrating kinases (Mnk1/2), we used a small molecule inhibitor of Mnk1/2, CGP57380, to inhibit eIF4E phosphorylation (kind gift of Dr. H. Gram, Novartis). Using MTS assays, we found that CGP57380 exhibited synergistic activity with imatinib mesyalte (IM) against Ba/F3-Bcr-Abl and K562 cells, and that this was associated with increased caspase-3 activation. Consistent with a role for eIF4E phosphorylation in cap-dependent translation, we found that CGP57380 augmented the IM-mediated inhibition of cap-binding complex (eIF4F) formation, as well as loading of mRNA onto polysomes. Interestingly, we also uncovered the existence of a novel negative-feedback loop regulating Mnk kinase. Here, treatment with CGP57380 resulted in increased phosphorylation of Mnk1 as well as its upstream activator, ERK, in a time- and dose-dependent manner. Because activation of the MEK/ERK pathway is essential to Bcr-Abl-mediated transformation, this finding suggested that the full activity of CGP57380 might be obscured by this feedback loop. In support of this, the addition of the MEK inhibitor, U0126, to the IM/CGP57380combination resulted in increased activity against CML cells. The triple combination was also effective against Ba/F3-Bcr-Abl cells harboring the E255K and T315I mutations, but not parental Ba/F3 cells (reduced by 50, 23, and 15% respectively of DMSO-treated controls by MTS assay). Colony forming assays also demonstrated the activity of the IM/CGP57380 combination against CML progenitor cells. In conclusion, our data demonstrate that: eIF4E protein expression and phosphorylation are upregulated in a Bcr-Abl-dependent manner in BP CML; Inhibition of eIF4E phosphorylation by the novel Mnk kinase inhibitor, CGP57380, synergizes with IM in killing CML cells, as well as overcomes certain forms of IM-resistance; The addition of CGP57380 to IM results in inhibition of key steps in cap-dependent mRNA translation, and may provide a mechanistic explanation for the activity of this agent in CML.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2620-2620
Author(s):  
Craig E. Eckfeldt ◽  
Ernesto Diaz-Flores ◽  
Michaeleen D. Diers ◽  
Susan K. Rathe ◽  
Kevin M. Shannon ◽  
...  

Abstract Abstract 2620 Acute Myeloid Leukemia (AML) is driven by genetic mutations that promote proliferation and prevent maturation of myeloid progenitors. While the majority of adults with AML achieve a remission with aggressive cytotoxic chemotherapy, a large proportion will ultimately die of relapsed/refractory disease. Given the limited efficacy and significant toxicity associated with current AML treatment strategies, new therapies are needed. While many genetic mutations have been shown to contribute to the development AML, the genetic heterogeneity seen in AML presents a challenge for the development of targeted therapies. The NRAS proto-oncogene and other key mediators of RAS signaling are frequently mutated in AML, making RAS-targeted therapies an attractive strategy for the treatment of AML. We previously developed an in vivo genetically-engineered mouse (GEM) model of AML driven by a tetracycline-repressible, constitutively-active form of NRAS, NRASG12V, and the leukemogenic fusion gene Mll-AF9. The leukemia cells in this model are “addicted” to NRASG12V, and inhibiting its expression with doxycycline (dox) results in rapid, complete remission of the AML. However, we have found that some mice relapse with NRASG12V-independent “dox-resistant” disease after continued suppression of NRASG12V expression, a phenomenon we might expect to occur in human AML after Ras signal pathway inhibition. To investigate the mechanisms of relapse in this model we generated two NRASG12V-independent (NRI) AML clones from a single primary NRASG12V-dependent (NRD) AML. We performed Affymetrix-based global gene expression analysis to compare the expression profiles of the primary NRD AML with the relapsed NRI AMLs. We identified 79 genes that were expressed at ≥ 2-fold higher levels in the NRD AML compared to both NRI AMLs. Among these were the putative tumor suppressor Cav2, and a negative regulator of Ras/Raf/Mek/Erk signaling, Dusp6. Down regulation of Dusp6 could enhance Raf/Mek/Erk signaling in the absence of NRASG12V, and thereby circumvent “addiction” to NRASG12V. Expression analysis also identified 20 genes that were expressed at ≥ 2-fold higher levels in both relapsed NRI AMLs compared to the primary NRD AML. Interestingly a Myc oncogene family member, Mycn (N-Myc), was expressed at > 60-fold higher levels in relapsed NRI AMLs compared to the primary NRD AML. Enforced expression of Mycn is sufficient to give rise to AML in a mouse model, and MYCN is widely expressed in human AML (Kawagoe et al. Cancer Res. 2007;67:10677), suggesting a critical role for Mycn in the development of relapsed NRI AML in this model. We are in the process of investigating whether enforced expression of Mycn and/or loss of Dusp6 are sufficient for the development of resistant NRI AML, and conversely if loss of Mycn and/or enforced expression of Dusp6 restore NRASG12V dependence in this model. We are also performing multi-parameter phosho-flow cytometery to further elucidate the mechanisms of AML resistance and relapse and to identify potentially “druggable” targets for AML. This represents an important step toward understanding the genetic determinates of treatment response and disease relapse with Ras pathway targeted therapies for AML, and thus provides a foundation for developing more effective and less toxic therapies for AML. Disclosures: Largaespada: NeoClone Biotechnology, Inc.: Co-founder, Consultancy, Equity Ownership; Discovery Genomics Inc.: Co-founder, Consultancy, Equity Ownership.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Mengjiao Chen ◽  
Peijun Ding ◽  
Lili Yang ◽  
Xufeng He ◽  
Chunjie Gao ◽  
...  

To evaluate the anti-inflammatory activities of QRQS against AD and the inhibitory molecular mechanisms of IL-33/ST2 signal transduction, BALB/c mice were divided into six groups (normal control, OVA control, low-dose of QRQS, middle-dose of QRQS, high-dose of QRQS, and cetirizine) and epicutaneously exposed to ovalbumin or PBS for 3 weeks and treated with QRQS for 2 weeks. Skin biopsies and blood samples were obtained for histological study, antibody analysis, and RNA isolation. HaCaT cells, stimulated by TNF-α and IFN-γ, were treated with QRQS to evaluate mRNA and protein expression by RT-PCR and ELISA. QRQS decreased both epidermal and dermal thickness, alleviated dermatitis, and reduced IL-33 and ST2 positive cell numbers. The concentration of specific IgE, IgG, IgG1, and IgG2a antibodies in serum and the expression of IL-33, ST2, IL-1RAcP, IL-4, and IL-13 mRNA in the skin were suppressed. No significant difference exists in TNF-α or IFN-γ. QRQS decreased IL-33 mRNA and protein secretion in HaCaT cells exposed to TNF-α and IFN-γ in a time- and concentration-dependent manner. QRQS regulates related molecule expression of ovalbumin-induced dermatitis involved in the IL-33/ST2 signaling axis in the treatment of acute AD.


2017 ◽  
Vol 114 (5) ◽  
pp. 1183-1188 ◽  
Author(s):  
Seong Su Kang ◽  
Zhentao Zhang ◽  
Xia Liu ◽  
Fredric P. Manfredsson ◽  
Li He ◽  
...  

The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson’s disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP+), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L’s neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.


2017 ◽  
Author(s):  
Jimmy de Melo ◽  
Anand Venkataraman ◽  
Brian S. Clark ◽  
Cristina Zibetti ◽  
Seth Blackshaw

AbstractPrecise control of the relative ratio of retinal neurons and glia generated during development is essential for visual function. We show that Lhx2, which encodes a LIM-homeodomain transcription factor essential for specification and differentiation of retinal Müller glia, also plays a critical role in the development of retinal neurons. Overexpression of Lhx2, and its transcriptional coactivator Ldb1, triggers cell cycle exit and inhibits both Notch signaling and retinal gliogenesis. Lhx2/Ldb1 overexpression also induced the formation of wide-field amacrine cells (wfACs). In contrast Rnf12, which encodes a negative regulator of LDB1, is necessary for the initiation of retinal gliogenesis. We also show that LHX2 protein binds upstream of multiple neurogenic bHLH factors including Ascl1 and Neurog2, which are necessary for suppression of gliogenesis and wfAC formation respectively, and activates their expression. Finally, we demonstrate that the relative level of the LHX2-LDB1 complex in the retina decreases in tandem with the onset of gliogenesis. These findings show that control of Lhx2 function by Ldb1 and Rnf12 acts as a molecular mechanism underpinning the coordinated differentiation of neurons and Müller glia in postnatal retina.Significance StatementThe molecular mechanisms that control the ratio neurons and glia that are generated by neuronal progenitors remain unclear. Here we show that Lhx2, a transcription factor essential for retinal gliogenesis, also controls development of retinal neurons. The Lhx2 coactivator Ldb1 promotes Lhx2-dependent neurogenesis, while the Lhx2 corepressor Rnf12 is necessary and sufficient for retinal gliogenesis. Furthermore, Lhx2 directly regulates expression of bHLH factors that promote neural development, which are necessary for Lhx2-dependent neurogenesis. Finally, we show that levels of the LHX2-LDB1 complex, which activates transcription, drop as gliogenesis begins. Dynamic regulation of Lhx2 activity by Ldb1 and Rnf12 thus controls the relative levels of retinal neurogenesis and gliogenesis, and may have similar functions elsewhere in the developing nervous system.


2015 ◽  
Vol 83 (3) ◽  
pp. 1210-1216 ◽  
Author(s):  
Júlia Silveira Fahel ◽  
Mariana Bueno de Souza ◽  
Marco Túlio Ribeiro Gomes ◽  
Patricia P. Corsetti ◽  
Natalia B. Carvalho ◽  
...  

Brucella abortusis a Gram-negative bacterium that infects humans and cattle, causing a chronic inflammatory disease known as brucellosis. A Th1-mediated immune response plays a critical role in host control of this pathogen. Recent findings indicate contrasting roles for lipid mediators in host responses against infections. 5-Lipoxygenase (5-LO) is an enzyme required for the production of the lipid mediators leukotrienes and lipoxins. To determine the involvement of 5-LO in host responses toB. abortusinfection, we intraperitoneally infected wild-type and 5-LO-deficient mice and evaluated the progression of infection and concomitant expression of immune mediators. Here, we demonstrate thatB. abortusinduced the upregulation of 5-LO mRNA in wild-type mice. Moreover, this pathogen upregulated the production of the lipid mediators leukotriene B4and lipoxin A4in a 5-LO-dependent manner. 5-LO-deficient mice displayed lower bacterial burdens in the spleen and liver and less severe liver pathology, demonstrating an enhanced resistance to infection. Host resistance paralleled an increased expression of the proinflammatory mediators interleukin-12 (IL-12), gamma interferon (IFN-γ), and inducible nitric oxide synthase (iNOS) during the course of infection. Moreover, we demonstrated that 5-LO downregulated the expression of IL-12 in macrophages duringB. abortusinfection. Our results suggest that 5-LO has a major involvement inB. abortusinfection, by functioning as a negative regulator of the protective Th1 immune responses against this pathogen.


Sign in / Sign up

Export Citation Format

Share Document