scholarly journals Effect of Dapsone Alone and in Combination With Intracellular Antibiotics Against the Biofilm Form of B. Burgdorferi

2020 ◽  
Author(s):  
Richard Ira Horowitz ◽  
Krithika Murali ◽  
Gauri Gaur ◽  
Phyllis R. Freeman ◽  
Eva Sapi

Abstract Objective Lyme disease is a tick-borne, multisystemic disease caused by Borrelia burgdorferi. Standard treatments for early Lyme disease include short courses of oral antibiotics but relapses often occur after discontinuation of treatment. Several studies have suggested that ongoing symptoms may be due to a highly antibiotic resistant form of B. burgdorferi called biofilms. Our recent clinical study reported the successful use of an intracellular mycobacterium persister drug used in treating leprosy, diaminodiphenyl sulfone (dapsone), in combination therapy for the treatment of Lyme disease. In this in vitro study, we evaluated the effectiveness of dapsone individually and in combination with cefuroxime and/or other antibiotics with intracellular activity including doxycycline, rifampin, and azithromycin against Borrelia biofilm forms utilizing crystal violet biofilm mass, and dimethyl methylene blue glycosaminoglycan assays combined with Live/Dead fluorescent microscopy analyses. Results Dapsone, alone or in various combinations with doxycycline, rifampin and azithromycin produced a significant reduction in the mass and protective glycosaminoglycan layer and overall viability of B. burgdorferi biofilm forms. This in vitro study strongly suggests that dapsone combination therapy could represent a novel and effective treatment option against the biofilm form of B. burgdorferi.

2020 ◽  
Author(s):  
Richard Ira Horowitz ◽  
Krithika Murali ◽  
Gauri Gaur ◽  
Phyllis R. Freeman ◽  
Eva Sapi

Abstract Objective: Lyme disease is a tick-borne, multisystemic disease caused by Borrelia burgdorferi. Standard treatments for early Lyme disease include short courses of oral antibiotics but relapses often occur after discontinuation of treatment. Several studies have suggested that ongoing symptoms may be due to a highly antibiotic resistant form of B. burgdorferi called biofilms. Our recent clinical study reported the successful use of an intracellular mycobacterium persister drug used in treating leprosy, diaminodiphenyl sulfone (dapsone), in combination therapy for the treatment of Lyme disease. In this in vitro study, we evaluated the effectiveness of dapsone individually and in combination with cefuroxime and/or other antibiotics with intracellular activity including doxycycline, rifampin, and azithromycin against Borrelia biofilm forms utilizing crystal violet biofilm mass, and dimethyl methylene blue glycosaminoglycan assays combined with Live/Dead fluorescent microscopy analyses. Results: Dapsone, alone or in various combinations with doxycycline, rifampin and azithromycin produced a significant reduction in the mass and protective glycosaminoglycan layer and overall viability of B. burgdorferi biofilm forms. This in vitro study strongly suggests that dapsone combination therapy could represent a novel and effective treatment option against the biofilm form of B. burgdorferi.


2020 ◽  
Author(s):  
Richard Ira Horowitz ◽  
Krithika Murali ◽  
Gauri Gaur ◽  
Phyllis R. Freeman ◽  
Eva Sapi

Abstract Objective: Lyme disease is a tick-borne, multisystemic disease caused by Borrelia burgdorferi. Standard treatments for early Lyme disease include short courses of oral antibiotics but relapses often occur after discontinuation of treatment. Several studies have suggested that ongoing symptoms may be due to a highly antibiotic resistant form of B. burgdorferi called biofilms. Our recent clinical study reported the successful use of an intracellular mycobacterium persister drug used in treating leprosy, diaminodiphenyl sulfone (dapsone), in combination therapy for the treatment of Lyme disease. In this in vitro study, we evaluated the effectiveness of dapsone individually and in combination with cefuroxime and/or other antibiotics with intracellular activity including doxycycline, rifampin, and azithromycin against Borrelia biofilm forms utilizing crystal violet biofilm mass, and dimethyl methylene blue glycosaminoglycan assays combined with Live/Dead fluorescent microscopy analyses. Results: Dapsone, alone or in various combinations with doxycycline, rifampin and azithromycin produced a significant reduction in the mass and protective glycosaminoglycan layer and overall viability of B. burgdorferi biofilm forms. This in vitro study strongly suggests that dapsone combination therapy could represent a novel and effective treatment option against the biofilm form of B. burgdorferi.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Richard I. Horowitz ◽  
Krithika Murali ◽  
Gauri Gaur ◽  
Phyllis R. Freeman ◽  
Eva Sapi

Abstract Objective Lyme disease is a tick-borne, multisystemic disease caused by Borrelia burgdorferi. Standard treatments for early Lyme disease include short courses of oral antibiotics but relapses often occur after discontinuation of treatment. Several studies have suggested that ongoing symptoms may be due to a highly antibiotic resistant form of B. burgdorferi called biofilms. Our recent clinical study reported the successful use of an intracellular mycobacterium persister drug used in treating leprosy, diaminodiphenyl sulfone (dapsone), in combination therapy for the treatment of Lyme disease. In this in vitro study, we evaluated the effectiveness of dapsone individually and in combination with cefuroxime and/or other antibiotics with intracellular activity including doxycycline, rifampin, and azithromycin against Borrelia biofilm forms utilizing crystal violet biofilm mass, and dimethyl methylene blue glycosaminoglycan assays combined with Live/Dead fluorescent microscopy analyses. Results Dapsone, alone or in various combinations with doxycycline, rifampin and azithromycin produced a significant reduction in the mass and protective glycosaminoglycan layer and overall viability of B. burgdorferi biofilm forms. This in vitro study strongly suggests that dapsone combination therapy could represent a novel and effective treatment option against the biofilm form of B. burgdorferi.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
W Andrew Clark ◽  
Rachel Ford ◽  
Lindsey Vance ◽  
Lexis Morley ◽  
Thomas Stovall ◽  
...  

Abstract Objectives This research project focused on the inhibitory effectiveness of a novel antimicrobial gel (AMG) towards a panel of common microbes involved in wound infections. Methods A novel antimicrobial topical gel consisting of vitamin E TPGS (tocopherol polyethylene glycol succinate), ascorbyl palmitate, zinc aspartate, lavender oil and deionized distilled water was developed in our laboratory. Various in vitro techniques were used to determine the effectiveness of AMG on prokaryotic and eukaryotic microbes. Results In vitro experiments show that while AMG had varying inhibitory effects on both prokaryotic and eukaryotic microbes, there was a predilection for AMG to inhibit planktonic growth and biofilm formation of Staphylococcus species, most notably Methicillin Resistant Staphylococcus aureus (MRSA). The inhibitory effect of the AMK on planktonic growth was immediate with a four-fold reduction in growth, compared to controls, within 4 to 6 hrs of induction. Within 24 hrs S. aureus growth was minimal and complete inhibition of growth was achieved within 48 hrs. In an in vitro biofilm model, the AMG inhibited Staphylococcus biofilm attachment by 67% (density), 82% (mass) and 95% (viability). On pre-formed established biofilms, the AMG was able to inhibit 47% (density), 47% (mass) and 44% (viability) Staphylococcus biofilms. Antibiotic comparison experiments demonstrated that the MIC (minimum inhibitory concentration) of Mupirocin was <1% while the AMG was slightly elevated at <2%. However, thus far, Staphylococcus has not demonstrated resistance to AMG whereas it has become a troubling concern for Mupirocin. Fluorescent microscopy using LIVE/DEAD (SYTO9/propidium iodide) staining of Staphylococcus culture controls exhibited robust growth and viability while AMG treated Staphylococcus cultures showed sparse growth of non-viable cells. AMG has inhibitory activities against normal and methicillin resistant S. pseudintermedius which are prevalent in lick granulomas in canines. Conclusions AMG is nontoxic to humans and canines and demonstrates potential for use in wound infections as an alternative to commonly prescribed antibiotics without the unintended drug resistance seen with antibiotics. AMG is an effective treatment option, this far in vitro, for Staphylococcus infections that are particularly prone to biofilm growth. Funding Sources ETSU, Honors College, Student/Faculty Collaborative Research Grant.


Author(s):  
Ф.М. Шакова ◽  
Т.И. Калинина ◽  
М.В. Гуляев ◽  
Г.А. Романова

Цель исследования - изучение влияния комбинированной терапии (мутантные молекулы эритропоэтина (EPO) и дипептидный миметик фактора роста нервов ГК-2H) на воспроизведение условного рефлекса пассивного избегания (УРПИ) и объем поражения коры мозга у крыс с двусторонним ишемическим повреждением префронтальной коры. Методика. Мутантные молекулы EPO (MЕРО-TR и MЕPО-Fc) с значительно редуцированной эритропоэтической и выраженной цитопротекторной активностью созданы методом генной инженерии. Используемый миметик фактора роста нервов человека, эндогенного регуляторного белка, в экспериментах in vitro проявлял отчетливые нейропротективные свойства. Двустороннюю фокальную ишемию префронтальной коры головного мозга крыс создавали методом фотохимического тромбоза. Выработку и оценку УРПИ проводили по стандартной методике. Объем повреждения мозга оценивался при помощи МРТ. MEPO-TR и MEPO-Fc (50 мкг/кг) вводили интраназально однократно через 1 ч после фототромбоза, ГК-2Н (1 мг/кг) - внутрибрюшинно через 4 ч после фототромбоза и далее в течение 4 послеоперационных суток. Результаты. Выявлено статистически значимое сохранение выработанного до ишемии УРПИ, а также значимое снижение объема повреждения коры при комплексной терапии. Полученные данные свидетельствуют об антиамнестическом и нейропротекторном эффектах примененной комбинированной терапии, которые наиболее отчетливо выражены в дозах: МEPO-Fc (50 мкг/кг) и ГК-2Н (1 мг/кг). Заключение. Подтвержден нейропротекторный эффект и усиление антиамнестического эффекта при сочетанном применении мутантных производных эритропоэтина - MEPO-TR и MEPO-Fc и дипептидного миметика фактора роста нервов человека ГК-2H. The aim of this study was to investigate the effect of combination therapy, including mutant erythropoietin molecules (EPO) and a dipeptide mimetic of the nerve growth factor, GK-2H, on the conditioned passive avoidance (PA) reflex and the volume of injury induced by bilateral ischemia of the prefrontal cortex in rats. Using the method of genetic engineering the mutant molecules of EPO, MERO-TR and MEPO-Fc, with strongly reduced erythropoietic and pronounced cytoprotective activity were created. The used human nerve growth factor mimetic, an endogenous regulatory protein based on the b-bend of loop 4, which is a dimeric substituted dipeptide of bis- (N-monosuccinyl-glycyl-lysine) hexamethylenediamine, GK-2 human (GK-2H), has proven neuroprotective in in vitro experiments. Methods. Bilateral focal ischemic infarction was modeled in the rat prefrontal cortex by photochemically induced thrombosis. The PA test was performed according to a standard method. Volume of brain injury was estimated using MRI. MEPO-TR, and MEPO-Fc (50 mg/kg, intranasally) were administered once, one hour after the injury. GK-2Н (1 mg/kg, i.p.) was injected four hours after the injury and then for next four days. Results. The study showed that the complex therapy provided statistically significant retention of the PA reflex developed prior to ischemia and a significant decrease in the volume of injury. The anti-amnestic and neuroprotective effects of combination therapy were most pronounced at doses of MEPO-Fc 50 mg/kg and GK-2H 1 mg/kg. Conclusion. This study has confirmed the neuroprotective effect and enhancement of the anti-amnestic effect exerted by the combination of mutant erythropoietin derivatives, MEPO-TR and MEPO-Fc, and the dipeptide mimetic of human growth factor GK-2H.


Author(s):  
О.В. Шамова ◽  
М.С. Жаркова ◽  
П.М. Копейкин ◽  
Д.С. Орлов ◽  
Е.А. Корнева

Антимикробные пептиды (АМП) системы врожденного иммунитета - соединения, играющие важную роль в патогенезе инфекционных заболеваний, так как обладают свойством инактивировать широкий спектр патогенных бактерий, обеспечивая противомикробную защиту живых организмов. В настоящее время АМП рассматриваются как потенциальные соединения-корректоры инфекционной патологии, вызываемой антибиотикорезистентными бактериями (АБР). Цель данной работы состояла в изученим механизмов антибактериального действия трех пептидов, принадлежащих к семейству бактенецинов - ChBac3.4, ChBac5 и mini-ChBac7.5Nb. Эти химически синтезированные пептиды являются аналогами природных пролин-богатых АМП, обнаруженных в лейкоцитах домашней козы Capra hircus и проявляющих высокую антимикробную активность, в том числе и в отношении грамотрицательных АБР. Методы. Минимальные ингибирующие и минимальные бактерицидные концентрации пептидов (МИК и МБК) определяли методом серийных разведений в жидкой питательной среде с последующим высевом на плотную питательную среду. Эффекты пептидов на проницаемость цитоплазматической мембраны бактерий для хромогенного маркера исследовали с использованием генетически модифицированного штамма Escherichia coli ML35p. Действие бактенецинов на метаболическую активность бактерий изучали с применением маркера резазурина. Результаты. Показано, что все исследованные пептиды проявляют высокую антимикробную активность в отношении Escherichia coli ML35p и антибиотикоустойчивых штаммов Escherichia coli ESBL и Acinetobacter baumannii in vitro, но их действие на бактериальные клетки разное. Использован комплекс методик, позволяющих наблюдать в режиме реального времени динамику действия бактенецинов в различных концентрациях (включая их МИК и МБК) на барьерную функцию цитоплазматической мембраны и на интенсивность метаболизма бактериальных клеток, что дало возможность выявить различия в характере воздействия бактенецинов, отличающихся по структуре молекулы, на исследуемые микроорганизмы. Установлено, что действие каждого из трех исследованных бактенецинов в бактерицидных концентрациях отличается по эффективности нарушения целостности бактериальных мембран и в скорости подавления метаболизма клеток. Заключение. Полученная информация дополнит существующие фундаментальные представления о механизмах действия пролин-богатых пептидов врожденного иммунитета, а также послужит основой для биотехнологических исследований, направленных на разработку на базе этих соединений новых антибиотических препаратов для коррекции инфекционных заболеваний, вызываемых АБР и являющимися причинами тяжелых внутрибольничных инфекций. Antimicrobial peptides (AMPs) of the innate immunity are compounds that play an important role in pathogenesis of infectious diseases due to their ability to inactivate a broad array of pathogenic bacteria, thereby providing anti-microbial host defense. AMPs are currently considered promising compounds for treatment of infectious diseases caused by antibiotic-resistant bacteria. The aim of this study was to investigate molecular mechanisms of the antibacterial action of three peptides from the bactenecin family, ChBac3.4, ChBac5, and mini-ChBac7.5Nb. These chemically synthesized peptides are analogues of natural proline-rich AMPs previously discovered by the authors of the present study in leukocytes of the domestic goat, Capra hircus. These peptides exhibit a high antimicrobial activity, in particular, against antibiotic-resistant gram-negative bacteria. Methods. Minimum inhibitory and minimum bactericidal concentrations of the peptides (MIC and MBC) were determined using the broth microdilution assay followed by subculturing on agar plates. Effects of the AMPs on bacterial cytoplasmic membrane permeability for a chromogenic marker were explored using a genetically modified strain, Escherichia coli ML35p. The effect of bactenecins on bacterial metabolic activity was studied using a resazurin marker. Results. All the studied peptides showed a high in vitro antimicrobial activity against Escherichia coli ML35p and antibiotic-resistant strains, Escherichia coli ESBL and Acinetobacter baumannii, but differed in features of their action on bacterial cells. The used combination of techniques allowed the real-time monitoring of effects of bactenecin at different concentrations (including their MIC and MBC) on the cell membrane barrier function and metabolic activity of bacteria. The differences in effects of these three structurally different bactenecins on the studied microorganisms implied that these peptides at bactericidal concentrations differed in their capability for disintegrating bacterial cell membranes and rate of inhibiting bacterial metabolism. Conclusion. The obtained information will supplement the existing basic concepts on mechanisms involved in effects of proline-rich peptides of the innate immunity. This information will also stimulate biotechnological research aimed at development of new antibiotics for treatment of infectious diseases, such as severe in-hospital infections, caused by antibiotic-resistant strains.


2020 ◽  
Author(s):  
Rafael Baptista ◽  
Sumana Bhowmick ◽  
Shen Jianying ◽  
Luis Mur

Tuberculosis (TB) is a major global threat mostly due to the development of antibiotic resistant forms of Mycobacterium tuberculosis, the causal agent of the disease. Driven by the pressing need for new anti-mycobacterial agents, several natural products (NPs) have been shown to have in vitro activities against M. tuberculosis. The utility of any NP as a drug lead is augmented when the anti-mycobacterial target(s) is unknown. To suggest these, we used a molecular docking approach to predict the interactions of 53 selected anti-mycobacterial NPs against known ‘druggable’ mycobacterial targets ClpP1P2, DprE1, InhA, KasA, PanK, PknB and Pks13. The docking scores / binding free energies were predicted and calculated using AutoDock Vina along with physicochemical and structural properties of the NPs, using PaDEL descriptors. These were compared to the established inhibitor (control) drugs for each mycobacterial target. The specific interactions of the bisbenzylisoquinoline alkaloids 2-nortiliacorinine, tiliacorine and 13’-bromotiliacorinine against the targets PknB and DprE1 (-11.4, -10.9 and -9.8 kcal.mol-1 ; -12.7, -10.9 and -10.3 kcal.mol-1 , respectively) and the lignan αcubebin and Pks13 (-11.0 kcal.mol-1 ) had significantly superior docking scores compared to controls. Our approach can be used to suggest predicted targets for the NP to be validated experimentally but these in silico steps are likely to facilitate drug optimisation.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S782-S782
Author(s):  
Sailaja Puttagunta ◽  
Maya Kahan-Haanum ◽  
Sharon Kredo-Russo ◽  
Eyal Weinstock ◽  
Efrat Khabra ◽  
...  

Abstract Background The prevalence of extended-spectrum beta-lactamase (ESBL) producing and carbapenem resistant (CR) Klebsiella pneumoniae (KP) has significantly risen in all geographic regions. Infections due to these bacteria are associated with high mortality across different infection types. Even with newer options, there remains an unmet need for safe and effective therapeutic options to treat infections caused by ESBL and CR KP. Phage therapy offers a novel approach with an unprecedented and orthogonal mechanism of action for treatment of diseases caused by pathogenic bacterial strains that are insufficiently addressed by available antibiotics. Phage-based therapies confer a high strain-level specificity and have a strong intrinsic safety profile. Here we describe the identification of novel phages that can effectively target antibiotic resistant KP strains. Host range of the 21 phages on 33 strain KP panel via solid culture infectivity assays. Red marks resistance to infection while sensitivity to phage is marked in green Methods KP clinical strains were isolated from human stool specimens preserved in glycerol. Selective culturing was carried, followed by testing of individual colonies for motility, indole and urease production, sequenced and analyzed by Kleborate tool to determine antibiotic resistant genes. Natural phages were isolated from plaques that developed on susceptible bacterial targets, sequenced and characterized. Results Antibiotic-resistant KP strains encoding beta lactamase genes or a carbapenemase (n=33) were isolated from healthy individuals (n=3), and patients with inflammatory bowel disease (n=26) or primary sclerosing cholangitis (n=3). Isolates sequencing revealed bla CTX-M15 and/or bla SHV encoding strains and carbapenamase KPC-2. A panel of 21 phages targeting the beta-lactamase- and carbapenemase-producing KP strains were identified. Phage sequencing revealed that all phages belong to the Caudovirales order and include 6 Siphoviridae, 14 Myoviridae, and 1 Podoviridae. In vitro lytic activity of the phages was tested on the isolated bacteria and revealed a coverage of 70% of the 33 isolated antibiotic resistant strains, &gt;50% of which were targeted by multiple phages. Conclusion Collectively, these results demonstrate the feasibility of identifying phage with potent activity against antibiotic resistant KP strains, and may provide a novel therapeutic approach for treatment of ESBL and CR KP infections. Disclosures All Authors: No reported disclosures


2020 ◽  
Vol 22 (1) ◽  
pp. 241
Author(s):  
Dong-Hoon Yeom ◽  
Yo-Seob Lee ◽  
Ilhwan Ryu ◽  
Sunju Lee ◽  
Byungje Sung ◽  
...  

Delta-like-ligand 4 (DLL4) is a promising target to augment the effects of VEGF inhibitors. A simultaneous blockade of VEGF/VEGFR and DLL4/Notch signaling pathways leads to more potent anti-cancer effects by synergistic anti-angiogenic mechanisms in xenograft models. A bispecific antibody targeting VEGF and DLL4 (ABL001/NOV1501/TR009) demonstrates more potent in vitro and in vivo biological activity compared to VEGF or DLL4 targeting monoclonal antibodies alone and is currently being evaluated in a phase 1 clinical study of heavy chemotherapy or targeted therapy pre-treated cancer patients (ClinicalTrials.gov Identifier: NCT03292783). However, the effects of a combination of ABL001 and chemotherapy on tumor vessels and tumors are not known. Hence, the effects of ABL001, with or without paclitaxel and irinotecan were evaluated in human gastric or colon cancer xenograft models. The combination treatment synergistically inhibited tumor progression compared to each monotherapy. More tumor vessel regression and apoptotic tumor cell induction were observed in tumors treated with the combination therapy, which might be due to tumor vessel normalization. Overall, these findings suggest that the combination therapy of ABL001 with paclitaxel or irinotecan would be a better clinical strategy for the treatment of cancer patients.


2019 ◽  
Vol 74 (11) ◽  
pp. 3211-3216 ◽  
Author(s):  
Stephan Göttig ◽  
Denia Frank ◽  
Eleonora Mungo ◽  
Anika Nolte ◽  
Michael Hogardt ◽  
...  

Abstract Objectives The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Methods Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. Results The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Conclusions Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.


Sign in / Sign up

Export Citation Format

Share Document