recent clinical study
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 9)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lih-Lian Chen ◽  
Mei-Hsien Lee ◽  
Chia-Lin Chang ◽  
Kuo-Tong Liou ◽  
Shu-Hsiang Liu ◽  
...  

Cinnamon (Cinnamomum cassia) is a well-known traditional Chinese medicine used to treat nocturia by tonifying and warming the kidney. Our recent clinical study found that overactive bladder (OAB) patients treated with cinnamon powder (CNP) patches exhibited significantly ameliorated OAB symptoms without significant side effects, but the mechanism of action is unclear. To explore the beneficial effects and action mechanisms of CNP and its major active component cinnamaldehyde (CNA) in an OAB-related murine model, cyclophosphamide- (CYP-) induced OAB injury was performed on male ICR mice in the presence or absence of CNP and CNA, as well as solifenacin, a clinical drug for OAB as a reference. Twenty-four-hour micturition patterns (frequency of urination and volume of urine per time), as well as histopathological examination, immunohistochemistry (IHC), and Western blotting of the bladder, were analyzed for mechanism elucidation. Administration of CYP (300 mg/kg, i.p.) induced typical OAB pathophysiological changes, including increased frequency of urination and reduced volume of urine. CYP-induced mice displayed strong edema of the bladder and hemorrhagic cystitis, accompanied by loss of normal corrugated folds and decreased muscarinic receptors (M2/M3) in the urothelium, and disordered/broken structures of the lamina propria and detrusor. These changes were correlated with increased leukocyte (CD11b) infiltration colocalized with inflammatory (pp65 NFκB, macrophage migration inhibitory factor (MIF)/Toll-like receptor 4 (TLR4)) and fibrotic (stem cell factor (SCF)/c-Kit, α-smooth muscle actin (α-SMA)/β-catenin) signals. Treatment with CNP (600 mg/kg, p.o.) and CNA (10–50 mg/kg, p.o.), but not solifenacin (50 mg/kg), 30 min after CYP induction significantly ameliorated CYP-induced dysfunction in micturition patterns and pathophysiological changes. CNP and CNA further suppressed MIF/TLR4-associated inflammatory and SCF/c-Kit-related fibrotic signaling pathways. Our findings indicate that suppression of inflammatory and fibrotic signals contributes to the crucial mechanism in the improvement of CYP-induced OAB by CNP and CNA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Derek Tobin ◽  
Runar Vige ◽  
Philip C. Calder

Over the last 15 years there has been an accumulation of data supporting the concept of a gut-brain axis whereby dysbiosis of the gut microbiota can impact neurological function. Such dysbiosis has been suggested as a possible environmental exposure triggering multiple sclerosis (MS). Dysbiosis has been consistently shown to result in a reduction in short-chain fatty acid (SCFA) producing bacteria and a reduction in stool and plasma levels of propionate has been shown for MS patients independent of disease stage and in different geographies. A wealth of evidence supports the action of propionate on T-cell activity, resulting in decreased T-helper cell 1 (Th1) and T-helper cell 17 (Th17) numbers/activity and increased regulatory T cell (Treg cell) numbers/activity and an overall anti-inflammatory profile. These different T-cell populations play various roles in the pathophysiology of MS. A recent clinical study in MS patients demonstrated that supplementation of propionate reduces the annual relapse rate and slows disease progression. This review discusses this data and the relevant mechanistic background and discusses whether taming of the overactive immune system in MS is likely to allow easier bacterial and viral infection.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2232
Author(s):  
Shozo Okamoto ◽  
Tohru Shiga ◽  
Nagara Tamaki

Theranostics is a precision medicine which integrates diagnostic nuclear medicine and radionuclide therapy for various cancers throughout body using suitable tracers and treatment that target specific biological pathways or receptors. This review covers traditional theranostics for thyroid cancer and pheochromocytoma with radioiodine compounds. In addition, recent theranostics of radioimmunotherapy for non-Hodgkin lymphoma, and treatment of bone metastasis using bone seeking radiopharmaceuticals are described. Furthermore, new radiopharmaceuticals for prostatic cancer and pancreatic cancer have been added. Of particular, F-18 Fluoro-2-Deoxyglucose (FDG) Positron Emission Tomography (PET) is often used for treatment monitoring and estimating patient outcome. A recent clinical study highlighted the ability of alpha-radiotherapy with high linear energy transfer (LET) to overcome treatment resistance to beta--particle therapy. Theranostics will become an ever-increasing part of clinical nuclear medicine.


Author(s):  
Shozo Okamoto ◽  
Tohru Shiga ◽  
Nagara Tamaki

Theranostics covers combination of diagnostic and therapeutic techniques for various cancers throughout body using suitable drug combination. This review covers well-known treatment of thyroid cancer and pheochromocytoma with I-131 compounds and also new radiopharmaceuticals for prostatic cancer and pancreatic cancer. Of particular, new trends toward patient outcome has been focused. A recent clinical study highlighted the ability of alpha-radiotherapy with high LET to overcome treatment resistance to beta--particle therapy. The theranostics will become an ever-increasing part of clinical nuclear medicine these days.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4448
Author(s):  
Anzhelika Vorobyeva ◽  
Maryam Oroujeni ◽  
Sarah Lindbo ◽  
Sophia Hober ◽  
Tianqi Xu ◽  
...  

Albumin binding domain-Derived Affinity ProTeins (ADAPTs) are small (5 kDa) engineered scaffold proteins that are promising targeting agents for radionuclide-based imaging. A recent clinical study has demonstrated that radiolabeled ADAPTs can efficiently visualize human epidermal growth factor receptor 2 (HER2) expression in breast cancer using SPECT imaging. However, the use of ADAPTs directly labeled with radiometals for targeted radionuclide therapy is limited by their high reabsorption and prolonged retention of activity in kidneys. In this study, we investigated whether a co-injection of lysine or gelofusin, commonly used for reduction of renal uptake of radiolabeled peptides in clinics, would reduce the renal uptake of [99mTc]Tc(CO)3-ADAPT6 in NMRI mice. In order to better understand the mechanism behind the reabsorption of [99mTc]Tc(CO)3-ADAPT6, we included several compounds that act on various parts of the reabsorption system in kidneys. Administration of gelofusine, lysine, probenecid, furosemide, mannitol, or colchicine did not change the uptake of [99mTc]Tc(CO)3-ADAPT6 in kidneys. Sodium maleate reduced the uptake of [99mTc]Tc(CO)3-ADAPT6 to ca. 25% of the uptake in the control, a high dose of fructose (50 mmol/kg) reduced the uptake by ca. two-fold. However, a lower dose (20 mmol/kg) had no effect. These results indicate that common clinical strategies are not effective for reduction of kidney uptake of [99mTc]Tc(CO)3-ADAPT6 and that other strategies for reduction of activity uptake or retention in kidneys should be investigated for ADAPT6.


2020 ◽  
Author(s):  
Richard Ira Horowitz ◽  
Krithika Murali ◽  
Gauri Gaur ◽  
Phyllis R. Freeman ◽  
Eva Sapi

Abstract Objective: Lyme disease is a tick-borne, multisystemic disease caused by Borrelia burgdorferi. Standard treatments for early Lyme disease include short courses of oral antibiotics but relapses often occur after discontinuation of treatment. Several studies have suggested that ongoing symptoms may be due to a highly antibiotic resistant form of B. burgdorferi called biofilms. Our recent clinical study reported the successful use of an intracellular mycobacterium persister drug used in treating leprosy, diaminodiphenyl sulfone (dapsone), in combination therapy for the treatment of Lyme disease. In this in vitro study, we evaluated the effectiveness of dapsone individually and in combination with cefuroxime and/or other antibiotics with intracellular activity including doxycycline, rifampin, and azithromycin against Borrelia biofilm forms utilizing crystal violet biofilm mass, and dimethyl methylene blue glycosaminoglycan assays combined with Live/Dead fluorescent microscopy analyses. Results: Dapsone, alone or in various combinations with doxycycline, rifampin and azithromycin produced a significant reduction in the mass and protective glycosaminoglycan layer and overall viability of B. burgdorferi biofilm forms. This in vitro study strongly suggests that dapsone combination therapy could represent a novel and effective treatment option against the biofilm form of B. burgdorferi.


2020 ◽  
Author(s):  
Richard Ira Horowitz ◽  
Krithika Murali ◽  
Gauri Gaur ◽  
Phyllis R. Freeman ◽  
Eva Sapi

Abstract Objective: Lyme disease is a tick-borne, multisystemic disease caused by Borrelia burgdorferi. Standard treatments for early Lyme disease include short courses of oral antibiotics but relapses often occur after discontinuation of treatment. Several studies have suggested that ongoing symptoms may be due to a highly antibiotic resistant form of B. burgdorferi called biofilms. Our recent clinical study reported the successful use of an intracellular mycobacterium persister drug used in treating leprosy, diaminodiphenyl sulfone (dapsone), in combination therapy for the treatment of Lyme disease. In this in vitro study, we evaluated the effectiveness of dapsone individually and in combination with cefuroxime and/or other antibiotics with intracellular activity including doxycycline, rifampin, and azithromycin against Borrelia biofilm forms utilizing crystal violet biofilm mass, and dimethyl methylene blue glycosaminoglycan assays combined with Live/Dead fluorescent microscopy analyses. Results: Dapsone, alone or in various combinations with doxycycline, rifampin and azithromycin produced a significant reduction in the mass and protective glycosaminoglycan layer and overall viability of B. burgdorferi biofilm forms. This in vitro study strongly suggests that dapsone combination therapy could represent a novel and effective treatment option against the biofilm form of B. burgdorferi.


2020 ◽  
Author(s):  
Richard Ira Horowitz ◽  
Krithika Murali ◽  
Gauri Gaur ◽  
Phyllis R. Freeman ◽  
Eva Sapi

Abstract Objective Lyme disease is a tick-borne, multisystemic disease caused by Borrelia burgdorferi. Standard treatments for early Lyme disease include short courses of oral antibiotics but relapses often occur after discontinuation of treatment. Several studies have suggested that ongoing symptoms may be due to a highly antibiotic resistant form of B. burgdorferi called biofilms. Our recent clinical study reported the successful use of an intracellular mycobacterium persister drug used in treating leprosy, diaminodiphenyl sulfone (dapsone), in combination therapy for the treatment of Lyme disease. In this in vitro study, we evaluated the effectiveness of dapsone individually and in combination with cefuroxime and/or other antibiotics with intracellular activity including doxycycline, rifampin, and azithromycin against Borrelia biofilm forms utilizing crystal violet biofilm mass, and dimethyl methylene blue glycosaminoglycan assays combined with Live/Dead fluorescent microscopy analyses. Results Dapsone, alone or in various combinations with doxycycline, rifampin and azithromycin produced a significant reduction in the mass and protective glycosaminoglycan layer and overall viability of B. burgdorferi biofilm forms. This in vitro study strongly suggests that dapsone combination therapy could represent a novel and effective treatment option against the biofilm form of B. burgdorferi.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 29 ◽  
Author(s):  
Damian Cordoba Díaz ◽  
Marta Losa Iglesias ◽  
Ricardo Becerro de Bengoa Vallejo ◽  
Manuel Cordoba Diaz

Onychomycosis is a fungal infection of nails that is widespread and difficult to treat because of the impermeable nature of human nails. Topically applied anti-fungal agents cannot penetrate this structure, and treatment regimens often resort to systemic antifungals with concomitant side effects. One recent clinical study suggested that mechanical fenestration of the nail using an intelligent nail drill might be a possible solution to this problem. In this work, an in vitro model of the transungual delivery of antifungal agents is presented, which utilizes real nail tissue and an inline flow system. This system was deployed to measure transungual delivery of ciclopirox and determined that nail fenestration improved drug delivery by 3–4-fold after 42 days. This study bolsters the argument that nail fenestration should be accepted as a pretreatment for onychomycosis and offers a way of evaluating new drugs or formulations designed to combat this condition.


2018 ◽  
pp. 32-38
Author(s):  
O. L. Barbarash ◽  
V. V. Kashtalap

The review article summarized the positions of experts on the clinical and prognostic significance of multifocal atherosclerosis in patients with different forms of coronary heart disease and the impact of this phenomenon on overall cardiovascular risk based on the foreign and domestic studies, the guidelines of the European and North American Cardiological and Surgical Associations. It also presents the review of the modern clinical guidelines for antithrombotic therapy in patients with peripheral atherosclerosis. The review presents prospects for the optimization of antithrombotic therapy based on a recent clinical study.


Sign in / Sign up

Export Citation Format

Share Document