scholarly journals Efficient Deep Learning Model for COVID-19 Detection in large CT images datasets: A cross-dataset analysis

2020 ◽  
Author(s):  
Pedro Silva ◽  
Eduardo Luz ◽  
Guilherme Silva ◽  
Gladston Moreira ◽  
Rodrigo Silva ◽  
...  

Abstract Early detection and diagnosis are critical factors to control the COVID-19 spreading. A number of deep learning-based methodologies have been recently proposed for COVID-19 screening in CT scans as a tool to automate and help with the diagnosis. To achieve these goals, in this work, we propose a slice voting-based approach extending the EfficientNet Family of deep artificial neural networks.We also design a specific data augmentation process and transfer learning for such task.Moreover, a cross-dataset study is performed into the two largest datasets to date. The proposed method presents comparable results to the state-of-the-art methods and the highest accuracy to date on both datasets (accuracy of 87.60\% for the COVID-CT dataset and accuracy of 98.99% for the SARS-CoV-2 CT-scan dataset). The cross-dataset analysis showed that the generalization power of deep learning models is far from acceptable for the task since accuracy drops from 87.68% to 56.16% on the best evaluation scenario.These results highlighted that the methods that aim at COVID-19 detection in CT-images have to improve significantly to be considered as a clinical option and larger and more diverse datasets are needed to evaluate the methods in a realistic scenario.

Author(s):  
P.Jagadeesh , Et. al.

The detection of tumor pixels in lung images is complex task due to its low contrast property. Hence, this paper uses deep learning architectures for both the detection and diagnosis of lung tumors in Computer Tomography (CT) images. In this article, the tumors are detected in lung CT images using Convolutional Neural Networks (CNN) architecture with the help of data augmentation methods. This proposed CNN architecture classifies the lung images into two categories as tumor images and normal images. Then, the segmentation method is used to segment the tumor pixels in the lung CT images and the segmented tumor regions are classified into either mild or severe using proposed CNN architecture.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Rao ◽  
Y Li ◽  
R Ramakrishnan ◽  
A Hassaine ◽  
D Canoy ◽  
...  

Abstract Background/Introduction Predicting incident heart failure has been challenging. Deep learning models when applied to rich electronic health records (EHR) offer some theoretical advantages. However, empirical evidence for their superior performance is limited and they remain commonly uninterpretable, hampering their wider use in medical practice. Purpose We developed a deep learning framework for more accurate and yet interpretable prediction of incident heart failure. Methods We used longitudinally linked EHR from practices across England, involving 100,071 patients, 13% of whom had been diagnosed with incident heart failure during follow-up. We investigated the predictive performance of a novel transformer deep learning model, “Transformer for Heart Failure” (BEHRT-HF), and validated it using both an external held-out dataset and an internal five-fold cross-validation mechanism using area under receiver operating characteristic (AUROC) and area under the precision recall curve (AUPRC). Predictor groups included all outpatient and inpatient diagnoses within their temporal context, medications, age, and calendar year for each encounter. By treating diagnoses as anchors, we alternatively removed different modalities (ablation study) to understand the importance of individual modalities to the performance of incident heart failure prediction. Using perturbation-based techniques, we investigated the importance of associations between selected predictors and heart failure to improve model interpretability. Results BEHRT-HF achieved high accuracy with AUROC 0.932 and AUPRC 0.695 for external validation, and AUROC 0.933 (95% CI: 0.928, 0.938) and AUPRC 0.700 (95% CI: 0.682, 0.718) for internal validation. Compared to the state-of-the-art recurrent deep learning model, RETAIN-EX, BEHRT-HF outperformed it by 0.079 and 0.030 in terms of AUPRC and AUROC. Ablation study showed that medications were strong predictors, and calendar year was more important than age. Utilising perturbation, we identified and ranked the intensity of associations between diagnoses and heart failure. For instance, the method showed that established risk factors including myocardial infarction, atrial fibrillation and flutter, and hypertension all strongly associated with the heart failure prediction. Additionally, when population was stratified into different age groups, incident occurrence of a given disease had generally a higher contribution to heart failure prediction in younger ages than when diagnosed later in life. Conclusions Our state-of-the-art deep learning framework outperforms the predictive performance of existing models whilst enabling a data-driven way of exploring the relative contribution of a range of risk factors in the context of other temporal information. Funding Acknowledgement Type of funding source: Private grant(s) and/or Sponsorship. Main funding source(s): National Institute for Health Research, Oxford Martin School, Oxford Biomedical Research Centre


Author(s):  
Jingyan Qiu ◽  
Linjian Li ◽  
Yida Liu ◽  
Yingjun Ou ◽  
Yubei Lin

Alzheimer’s disease (AD) is one of the most common forms of dementia. The early stage of the disease is defined as Mild Cognitive Impairment (MCI). Recent research results have shown the prospect of combining Magnetic Resonance Imaging (MRI) scanning of the brain and deep learning to diagnose AD. However, the CNN deep learning model requires a large scale of samples for training. Transfer learning is the key to enable a model with high accuracy by using limited data for training. In this paper, DenseNet and Inception V4, which were pre-trained on the ImageNet dataset to obtain initialization values of weights, are, respectively, used for the graphic classification task. The ensemble method is employed to enhance the effectiveness and efficiency of the classification models and the result of different models are eventually processed through probability-based fusion. Our experiments were completely conducted on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) public dataset. Only the ternary classification is made due to a higher demand for medical detection and diagnosis. The accuracies of AD/MCI/Normal Control (NC) of different models are estimated in this paper. The results of the experiments showed that the accuracies of the method achieved a maximum of 92.65%, which is a remarkable outcome compared with the accuracies of the state-of-the-art methods.


2021 ◽  
Vol 14 (11) ◽  
pp. 1950-1963
Author(s):  
Jie Liu ◽  
Wenqian Dong ◽  
Qingqing Zhou ◽  
Dong Li

Cardinality estimation is a fundamental and critical problem in databases. Recently, many estimators based on deep learning have been proposed to solve this problem and they have achieved promising results. However, these estimators struggle to provide accurate results for complex queries, due to not capturing real inter-column and inter-table correlations. Furthermore, none of these estimators contain the uncertainty information about their estimations. In this paper, we present a join cardinality estimator called Fauce. Fauce learns the correlations across all columns and all tables in the database. It also contains the uncertainty information of each estimation. Among all studied learned estimators, our results are promising: (1) Fauce is a light-weight estimator, it has 10× faster inference speed than the state of the art estimator; (2) Fauce is robust to the complex queries, it provides 1.3×--6.7× smaller estimation errors for complex queries compared with the state of the art estimator; (3) To the best of our knowledge, Fauce is the first estimator that incorporates uncertainty information for cardinality estimation into a deep learning model.


Author(s):  
Yang Liu ◽  
Yachao Yuan ◽  
Jing Liu

Abstract Automatic defect classification is vital to ensure product quality, especially for steel production. In the real world, the amount of collected samples with labels is limited due to high labor costs, and the gathered dataset is usually imbalanced, making accurate steel defect classification very challenging. In this paper, a novel deep learning model for imbalanced multi-label surface defect classification, named ImDeep, is proposed. It can be deployed easily in steel production lines to identify different defect types on the steel's surface. ImDeep incorporates three key techniques, i.e., Imbalanced Sampler, Fussy-FusionNet, and Transfer Learning. It improves the model's classification performance with multi-label and reduces the model's complexity over small datasets with low latency. The performance of different fusion strategies and three key techniques of ImDeep is verified. Simulation results prove that ImDeep accomplishes better performance than the state-of-the-art over the public dataset with varied sizes. Specifically, ImDeep achieves about 97% accuracy of steel surface defect classification over a small imbalanced dataset with a low latency, which improves about 10% compared with that of the state-of-the-art.


Author(s):  
Mostafa El Habib Daho ◽  
Amin Khouani ◽  
Mohammed El Amine Lazouni ◽  
Sidi Ahmed Mahmoudi

Author(s):  
Deepak Kumar Sharma ◽  
Saakshi Bhargava ◽  
Aashna Jha ◽  
Pawan Singh

2020 ◽  
Vol 12 (2) ◽  
pp. 21-34
Author(s):  
Mostefai Abdelkader

In recent years, increasing attention is being paid to sentiment analysis on microblogging platforms such as Twitter. Sentiment analysis refers to the task of detecting whether a textual item (e.g., a tweet) contains an opinion about a topic. This paper proposes a probabilistic deep learning approach for sentiments analysis. The deep learning model used is a convolutional neural network (CNN). The main contribution of this approach is a new probabilistic representation of the text to be fed as input to the CNN. This representation is a matrix that stores for each word composing the message the probability that it belongs to a positive class and the probability that it belongs to a negative class. The proposed approach is evaluated on four well-known datasets HCR, OMD, STS-gold, and a dataset provided by the SemEval-2017 Workshop. The results of the experiments show that the proposed approach competes with the state-of-the-art sentiment analyzers and has the potential to detect sentiments from textual data in an effective manner.


Sign in / Sign up

Export Citation Format

Share Document