scholarly journals Efficient Protection of Probiotics for Delivery to the gastric tract by Cellulose Sulphate Encapsulation

2020 ◽  
Author(s):  
Walter Henry Gunzburg ◽  
Myo Myint Aung ◽  
Pauline Toa ◽  
Shirelle Ng ◽  
Eliot Read ◽  
...  

Abstract Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota can restore health. This can be achieved by oral delivery of members of the microbiome (including probiotics) or by fecal microbiome transplantation. In order to provide their health promoting effects, microbiota must survive (i) transport and storage (i.e. shelf life) and (ii) transit through the highly acid conditions in the stomach and bile salts in the small intestine. We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS) that protects members of the microbiota from stomach acid and bile.

2020 ◽  
Author(s):  
Walter Henry Gunzburg ◽  
Myo Myint Aung ◽  
Pauline Toa ◽  
Shirelle Ng ◽  
Eliot Read ◽  
...  

Abstract Background: Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota by delivery of probiotic micro-organisms can improve health. However, orally delivered probiotic micro-organisms must survive transit through lethal highly acid conditions of the stomach and bile salts in the small intestine. Current methods to protect probiotic micro-organisms are still not effective enough.Results : We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS) that protects members of the microbiota from stomach acid and bile. Here we show that six commonly used probiotic strains (5 bacteria and 1 yeast) can be encapsulated within CS microspheres. These encapsulated strains survive low pH in vitro for up to 4 hours without appreciable loss in viability as compared to their respective non-encapsulated counterparts. They also survive subsequent exposure to bile. The CS microspheres can be digested by levels of cellulase found in the human intestine, indicating one mechanism of release. Studies in mice that were fed CS encapsulated autofluorescing, commensal E. coli demonstrated release and colonization of the intestinal tract.Conclusion: Taken together, the data suggests that CS microencapsulation can protect bacteria and yeast from viability losses due to stomach acid, allowing the use of lower oral doses of probiotics and microbiota, whilst ensuring good intestinal delivery and release.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Walter H. Gunzburg ◽  
Myo Myint Aung ◽  
Pauline Toa ◽  
Shirelle Ng ◽  
Eliot Read ◽  
...  

Abstract Background Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota by delivery of probiotic microorganisms can improve health. However, orally delivered probiotic microorganisms must survive transit through lethal highly acid conditions of the stomach and bile salts in the small intestine. Current methods to protect probiotic microorganisms are still not effective enough. Results We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS), that protects members of the microbiota from stomach acid and bile. Here we show that six commonly used probiotic strains (5 bacteria and 1 yeast) can be encapsulated within CS microspheres. These encapsulated strains survive low pH in vitro for at least 4 h without appreciable loss in viability as compared to their respective non-encapsulated counterparts. They also survive subsequent exposure to bile. The CS microspheres can be digested by cellulase at concentrations found in the human intestine, indicating one mechanism of release. Studies in mice that were fed CS encapsulated autofluorescing, commensal E. coli demonstrated release and colonization of the intestinal tract. Conclusion Taken together, the data suggests that CS microencapsulation can protect bacteria and yeasts from viability losses due to stomach acid, allowing the use of lower oral doses of probiotics and microbiota, whilst ensuring good intestinal delivery and release.


2020 ◽  
Author(s):  
Walter Henry Gunzburg ◽  
Myo Myint Aung ◽  
Pauline Toa ◽  
Shirelle Ng ◽  
Eliot Read ◽  
...  

Abstract Background Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota by delivery of probiotic microorganisms can improve health. However, orally delivered probiotic microorganisms must survive transit through lethal highly acid conditions of the stomach and bile salts in the small intestine. Current methods to protect probiotic microorganisms are still not effective enough.Results We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS) that protects members of the microbiota from stomach acid and bile. Here we show that six commonly used probiotic strains (5 bacteria and 1 yeast) can be encapsulated within CS microspheres. These encapsulated strains survive low pH in vitro for up to 4 hours without appreciable loss in viability as compared to their respective non-encapsulated counterparts. They also survive subsequent exposure to bile. The CS microspheres can be digested by cellulase in levels found in the human intestine, indicating one mechanism of release. Studies in mice that were fed CS encapsulated autofluorescing, commensal E. coli demonstrated release and colonization of the intestinal tract.Conclusion Taken together, the data suggests that CS microencapsulation can protect bacteria and yeasts from viability losses due to stomach acid, allowing the use of lower oral doses of probiotics and microbiota, whilst ensuring good intestinal delivery and release.


Author(s):  
Piero Sciavilla ◽  
Francesco Strati ◽  
Monica Di Paola ◽  
Monica Modesto ◽  
Francesco Vitali ◽  
...  

Abstract Studies so far conducted on irritable bowel syndrome (IBS) have been focused mainly on the role of gut bacterial dysbiosis in modulating the intestinal permeability, inflammation, and motility, with consequences on the quality of life. Limited evidences showed a potential involvement of gut fungal communities. Here, the gut bacterial and fungal microbiota of a cohort of IBS patients have been characterized and compared with that of healthy subjects (HS). The IBS microbial community structure differed significantly compared to HS. In particular, we observed an enrichment of bacterial taxa involved in gut inflammation, such as Enterobacteriaceae, Streptococcus, Fusobacteria, Gemella, and Rothia, as well as depletion of health-promoting bacterial genera, such as Roseburia and Faecalibacterium. Gut microbial profiles in IBS patients differed also in accordance with constipation. Sequence analysis of the gut mycobiota showed enrichment of Saccharomycetes in IBS. Culturomics analysis of fungal isolates from feces showed enrichment of Candida spp. displaying from IBS a clonal expansion and a distinct genotypic profiles and different phenotypical features when compared to HS of Candida albicans isolates. Alongside the well-characterized gut bacterial dysbiosis in IBS, this study shed light on a yet poorly explored fungal component of the intestinal ecosystem, the gut mycobiota. Our results showed a differential fungal community in IBS compared to HS, suggesting potential for new insights on the involvement of the gut mycobiota in IBS. Key points • Comparison of gut microbiota and mycobiota between IBS and healthy subjects • Investigation of cultivable fungi in IBS and healthy subjects • Candida albicans isolates result more virulent in IBS subjects compared to healthy subjects


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3907
Author(s):  
Sergio Pérez-Burillo ◽  
Beatriz Navajas-Porras ◽  
Alicia López-Maldonado ◽  
Daniel Hinojosa-Nogueira ◽  
Silvia Pastoriza ◽  
...  

Green tea can influence the gut microbiota by either stimulating the growth of specific species or by hindering the development of detrimental ones. At the same time, gut bacteria can metabolize green tea compounds and produce smaller bioactive molecules. Accordingly, green tea benefits could be due to beneficial bacteria or to microbial bioactive metabolites. Therefore, the gut microbiota is likely to act as middle man for, at least, some of the green tea benefits on health. Many health promoting effects of green tea seems to be related to the inter-relation between green tea and gut microbiota. Green tea has proven to be able to correct the microbial dysbiosis that appears during several conditions such as obesity or cancer. On the other hand, tea compounds influence the growth of bacterial species involved in inflammatory processes such as the release of LPS or the modulation of IL production; thus, influencing the development of different chronic diseases. There are many studies trying to link either green tea or green tea phenolic compounds to health benefits via gut microbiota. In this review, we tried to summarize the most recent research in the area.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 369
Author(s):  
Jennifer Schwestka ◽  
Eva Stoger

The efficacy of drugs and vaccines depends on their stability and ability to interact with their targets in vivo. Many drugs benefit from encapsulation, which protects them from harsh conditions and allows targeted delivery and controlled release. Although many encapsulation methods are inexpensive, such as the formulation of tablets for oral delivery, others require complex procedures that add significantly to production costs and require low-temperature transport and storage, making them inaccessible in developing countries. In this review we consider the benefits of encapsulation technologies based on plants. Plant-derived biopolymers such as starch and the maize storage protein zein are already used as protective coatings, but plant cells used as production host provide natural in vivo bioencapsulation that survives passage through the stomach and releases drugs in the intestine, due to the presence of microbes that can digest the cell wall. Proteins can also be encapsulated in subcellular compartments such as protein bodies, which ensure stability and activity while often conferring additional immunomodulatory effects. Finally, we consider the incorporation of drugs and vaccines into plant-derived nanoparticles assembled from the components of viruses. These are extremely versatile, allowing the display of epitopes and targeting peptides as well as carrying cargoes of drugs and imaging molecules.


2017 ◽  
Vol 312 (4) ◽  
pp. G327-G339 ◽  
Author(s):  
Rebecca L. Knoll ◽  
Kristoffer Forslund ◽  
Jens Roat Kultima ◽  
Claudius U. Meyer ◽  
Ulrike Kullmer ◽  
...  

Current treatment for pediatric inflammatory bowel disease (IBD) patients is often ineffective, with serious side effects. Manipulating the gut microbiota via fecal microbiota transplantation (FMT) is an emerging treatment approach but remains controversial. We aimed to assess the composition of the fecal microbiome through a comparison of pediatric IBD patients to their healthy siblings, evaluating risks and prospects for FMT in this setting. A case-control (sibling) study was conducted analyzing fecal samples of six children with Crohn’s disease (CD), six children with ulcerative colitis (UC) and 12 healthy siblings by metagenomic sequencing. In addition, lifetime antibiotic intake was retrospectively determined. Species richness and diversity were significantly reduced in UC patients compared with control [Mann-Whitney U-test false discovery rate (MWU FDR) = 0.011]. In UC, bacteria positively influencing gut homeostasis, e.g., Eubacterium rectale and Faecalibacterium prausnitzii, were significantly reduced in abundance (MWU FDR = 0.05). Known pathobionts like Escherichia coli were enriched in UC patients (MWU FDR = 0.084). Moreover, E. coli abundance correlated positively with that of several virulence genes (SCC > 0.65, FDR < 0.1). A shift toward antibiotic-resistant taxa in both IBD groups distinguished them from controls [MWU Benjamini-Hochberg-Yekutieli procedure (BY) FDR = 0.062 in UC, MWU BY FDR = 0.019 in CD). The collected results confirm a microbial dysbiosis in pediatric UC, and to a lesser extent in CD patients, replicating associations found previously using different methods. Taken together, these observations suggest microbiotal remodeling therapy from family donors, at least for children with UC, as a viable option. NEW & NOTEWORTHY In this sibling study, prior reports of microbial dysbiosis in IBD patients from 16S rRNA sequencing was verified using deep shotgun sequencing and augmented with insights into the abundance of bacterial virulence genes and bacterial antibiotic resistance determinants, seen against the background of data on the specific antibiotic intake of each of the study participants. The observed dysbiosis, which distinguishes patients from siblings, highlights such siblings as potential donors for microbiotal remodeling therapy in IBD.


2016 ◽  
Vol 39 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Maja Mauric ◽  
Kristina Starcevic ◽  
Sven Mencik ◽  
Mario Ostovic ◽  
Anamaria Ekert Kabalin

AbstractDalmatian turkey is a slow growing breed kept in free range systems. It is a type of “old fashioned poultry” whose meat is present on the market and accepted by consumers. However, no information about its meat quality and fatty acid profile is available. The chemical composition of the meat was influenced by gender and meat type and these differences could be important from the consumer’s point of view. Fatty acid composition was characterized by the predominance of n6 fatty acids, especially C18:2n6 and a high n6/n3 ratio. Increased time of storage strongly reduced the long chain polyunsaturated fatty acid (LC PUFA) and increased atherogenicity and thrombogenicity indices (AI and TI) in thigh tissue. The content of beneficial n3 PUFA was influenced by meat type, with lower values of C18:3n3 and higher values of LC PUFA in the breast compared to the thighs. The potential intake of LC PUFA of comercial turkey in the human diet was lower in comparison to poultry fed with complete feed mixtures. An interesting fact was the higher DHA values in comparison with DPA values in breast tissue, which is characteristic of old poultry breeds. The Dalmatian turkey is a highly valued traditional product and an important archaic breed for gene preservation and biodiversity. Nevertheless, Dalmatian turkey meat could be even further improved by minimal dietary manipulation to become a product with additional health promoting effects.


Author(s):  
Harold J. Boutte ◽  
Jacqueline Chen ◽  
Todd N. Wylie ◽  
Kristine M. Wylie ◽  
Yan Xie ◽  
...  

Background & Aims: Loss of functional small bowel surface area causes short bowel syndrome (SBS), intestinal failure, and parenteral nutrition (PN) dependence. The gut adaptive response following resection may be difficult to predict, and it may take up to two years to determine which patients will wean from PN. Here we examined features of gut microbiota and bile acid (BA) metabolism in determining adaptation and ability to wean from PN. Methods: Stool and sera were collected from healthy controls and from SBS patients (n=52) with ileostomy, jejunostomy, ileocolonic and jejunocolonic anastomoses fed with PN plus enteral nutrition or who were exclusively enterally fed. We undertook 16S rRNA gene sequencing, BA profiling and 7α-hydroxy-4-cholesten-3-one (C4) quantitation with LC-MS/MS, and serum amino acid analyses. Results: SBS patients exhibited altered gut microbiota with reduced gut microbial diversity compared to healthy controls. We observed differences in the microbiomes of SBS patients with ileostomy vs. jejunostomy, jejunocolonic vs. ileocolonic anastomoses, and PN-dependence compared to those who weaned from PN. Stool and serum BA composition and C4 concentrations were also altered in SBS patients, reflecting adaptive changes in enterohepatic BA cycling. Stools from patients who weaned from PN were enriched in secondary BAs including deoxycholic acid and lithocholic acid. Conclusions: Shifts in gut microbiota and BA metabolites may generate a favorable luminal environment in select SBS patients, promoting the ability to wean from PN. Pro-adaptive microbial species and select BA may provide novel targets for patient-specific therapies for SBS.


Sign in / Sign up

Export Citation Format

Share Document