scholarly journals Efficient protection of microorganisms for delivery to the intestinal tract by cellulose sulphate encapsulation

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Walter H. Gunzburg ◽  
Myo Myint Aung ◽  
Pauline Toa ◽  
Shirelle Ng ◽  
Eliot Read ◽  
...  

Abstract Background Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota by delivery of probiotic microorganisms can improve health. However, orally delivered probiotic microorganisms must survive transit through lethal highly acid conditions of the stomach and bile salts in the small intestine. Current methods to protect probiotic microorganisms are still not effective enough. Results We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS), that protects members of the microbiota from stomach acid and bile. Here we show that six commonly used probiotic strains (5 bacteria and 1 yeast) can be encapsulated within CS microspheres. These encapsulated strains survive low pH in vitro for at least 4 h without appreciable loss in viability as compared to their respective non-encapsulated counterparts. They also survive subsequent exposure to bile. The CS microspheres can be digested by cellulase at concentrations found in the human intestine, indicating one mechanism of release. Studies in mice that were fed CS encapsulated autofluorescing, commensal E. coli demonstrated release and colonization of the intestinal tract. Conclusion Taken together, the data suggests that CS microencapsulation can protect bacteria and yeasts from viability losses due to stomach acid, allowing the use of lower oral doses of probiotics and microbiota, whilst ensuring good intestinal delivery and release.

2020 ◽  
Author(s):  
Walter Henry Gunzburg ◽  
Myo Myint Aung ◽  
Pauline Toa ◽  
Shirelle Ng ◽  
Eliot Read ◽  
...  

Abstract Background Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota by delivery of probiotic microorganisms can improve health. However, orally delivered probiotic microorganisms must survive transit through lethal highly acid conditions of the stomach and bile salts in the small intestine. Current methods to protect probiotic microorganisms are still not effective enough.Results We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS) that protects members of the microbiota from stomach acid and bile. Here we show that six commonly used probiotic strains (5 bacteria and 1 yeast) can be encapsulated within CS microspheres. These encapsulated strains survive low pH in vitro for up to 4 hours without appreciable loss in viability as compared to their respective non-encapsulated counterparts. They also survive subsequent exposure to bile. The CS microspheres can be digested by cellulase in levels found in the human intestine, indicating one mechanism of release. Studies in mice that were fed CS encapsulated autofluorescing, commensal E. coli demonstrated release and colonization of the intestinal tract.Conclusion Taken together, the data suggests that CS microencapsulation can protect bacteria and yeasts from viability losses due to stomach acid, allowing the use of lower oral doses of probiotics and microbiota, whilst ensuring good intestinal delivery and release.


2020 ◽  
Author(s):  
Walter Henry Gunzburg ◽  
Myo Myint Aung ◽  
Pauline Toa ◽  
Shirelle Ng ◽  
Eliot Read ◽  
...  

Abstract Background: Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota by delivery of probiotic micro-organisms can improve health. However, orally delivered probiotic micro-organisms must survive transit through lethal highly acid conditions of the stomach and bile salts in the small intestine. Current methods to protect probiotic micro-organisms are still not effective enough.Results : We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS) that protects members of the microbiota from stomach acid and bile. Here we show that six commonly used probiotic strains (5 bacteria and 1 yeast) can be encapsulated within CS microspheres. These encapsulated strains survive low pH in vitro for up to 4 hours without appreciable loss in viability as compared to their respective non-encapsulated counterparts. They also survive subsequent exposure to bile. The CS microspheres can be digested by levels of cellulase found in the human intestine, indicating one mechanism of release. Studies in mice that were fed CS encapsulated autofluorescing, commensal E. coli demonstrated release and colonization of the intestinal tract.Conclusion: Taken together, the data suggests that CS microencapsulation can protect bacteria and yeast from viability losses due to stomach acid, allowing the use of lower oral doses of probiotics and microbiota, whilst ensuring good intestinal delivery and release.


2020 ◽  
Author(s):  
Walter Henry Gunzburg ◽  
Myo Myint Aung ◽  
Pauline Toa ◽  
Shirelle Ng ◽  
Eliot Read ◽  
...  

Abstract Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota can restore health. This can be achieved by oral delivery of members of the microbiome (including probiotics) or by fecal microbiome transplantation. In order to provide their health promoting effects, microbiota must survive (i) transport and storage (i.e. shelf life) and (ii) transit through the highly acid conditions in the stomach and bile salts in the small intestine. We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS) that protects members of the microbiota from stomach acid and bile.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2444
Author(s):  
Kenjiro Ono ◽  
Mayumi Tsuji ◽  
Tritia R. Yamasaki ◽  
Giulio M. Pasinetti

The aggregation and deposition of α-synuclein (αS) are major pathologic features of Parkinson’s disease, dementia with Lewy bodies, and other α-synucleinopathies. The propagation of αS pathology in the brain plays a key role in the onset and progression of clinical phenotypes. Thus, there is increasing interest in developing strategies that attenuate αS aggregation and propagation. Based on cumulative evidence that αS oligomers are neurotoxic and critical species in the pathogenesis of α-synucleinopathies, we and other groups reported that phenolic compounds inhibit αS aggregation including oligomerization, thereby ameliorating αS oligomer-induced cellular and synaptic toxicities. Heterogeneity in gut microbiota may influence the efficacy of dietary polyphenol metabolism. Our recent studies on the brain-penetrating polyphenolic acids 3-hydroxybenzoic acid (3-HBA), 3,4-dihydroxybenzoic acid (3,4-diHBA), and 3-hydroxyphenylacetic acid (3-HPPA), which are derived from gut microbiota-based metabolism of dietary polyphenols, demonstrated an in vitro ability to inhibit αS oligomerization and mediate aggregated αS-induced neurotoxicity. Additionally, 3-HPPA, 3,4-diHBA, 3-HBA, and 4-hydroxybenzoic acid significantly attenuated intracellular αS seeding aggregation in a cell-based system. This review focuses on recent research developments regarding neuroprotective properties, especially anti-αS aggregation effects, of phenolic compounds and their metabolites by the gut microbiome, including our findings in the pathogenesis of α-synucleinopathies.


2019 ◽  
Vol 63 ◽  
pp. 103585
Author(s):  
Benedetta Belà ◽  
Maria Magdalena Coman ◽  
Maria Cristina Verdenelli ◽  
Cinzia Bianchi ◽  
Giulia Pignataro ◽  
...  

2020 ◽  
Vol 8 (10) ◽  
pp. 1483
Author(s):  
Miloslava Kollarcikova ◽  
Marcela Faldynova ◽  
Jitka Matiasovicova ◽  
Eva Jahodarova ◽  
Tereza Kubasova ◽  
...  

Bacteroidaceae are common gut microbiota members in all warm-blooded animals. However, if Bacteroidaceae are to be used as probiotics, the species selected for different hosts should reflect the natural distribution. In this study, we therefore evaluated host adaptation of bacterial species belonging to the family Bacteroidaceae. B. dorei, B. uniformis, B. xylanisolvens, B. ovatus, B. clarus, B. thetaiotaomicron and B. vulgatus represented human-adapted species while B. gallinaceum, B. caecigallinarum, B. mediterraneensis, B. caecicola, M. massiliensis, B. plebeius and B. coprocola were commonly detected in chicken but not human gut microbiota. There were 29 genes which were present in all human-adapted Bacteroides but absent from the genomes of all chicken isolates, and these included genes required for the pentose cycle and glutamate or histidine metabolism. These genes were expressed during an in vitro competitive assay, in which human-adapted Bacteroides species overgrew the chicken-adapted isolates. Not a single gene specific for the chicken-adapted species was found. Instead, chicken-adapted species exhibited signs of frequent horizontal gene transfer, of KUP, linA and sugE genes in particular. The differences in host adaptation should be considered when the new generation of probiotics for humans or chickens is designed.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 713
Author(s):  
Jeanne Alard ◽  
Benoit Cudennec ◽  
Denise Boutillier ◽  
Véronique Peucelle ◽  
Amandine Descat ◽  
...  

Since alterations of the gut microbiota have been shown to play a major role in obesity, probiotics have attracted attention. Our aim was to identify probiotic candidates for the management of obesity using a combination of in vitro and in vivo approaches. We evaluated in vitro the ability of 23 strains to limit lipid accumulation in adipocytes and to enhance the secretion of satiety-promoting gut peptide in enteroendocrine cells. Following the in vitro screening, selected strains were further investigated in vivo, single, or as mixtures, using a murine model of diet-induced obesity. Strain Bifidobacterium longum PI10 administrated alone and the mixture of B. animalis subsp. lactis LA804 and Lactobacillus gasseri LA806 limited body weight gain and reduced obesity-associated metabolic dysfunction and inflammation. These protective effects were associated with changes in the hypothalamic gene expression of leptin and leptin receptor as well as with changes in the composition of gut microbiota and the profile of bile acids. This study provides crucial clues to identify new potential probiotics as effective therapeutic approaches in the management of obesity, while also providing some insights into their mechanisms of action.


Microbiology ◽  
2010 ◽  
Vol 156 (11) ◽  
pp. 3342-3353 ◽  
Author(s):  
Annina Zihler ◽  
Mélanie Gagnon ◽  
Christophe Chassard ◽  
Anita Hegland ◽  
Marc J. A. Stevens ◽  
...  

New biological strategies for the treatment of Salmonella infection are needed in response to the increase in antibiotic-resistant strains. Escherichia coli L1000 and Bifidobacterium thermophilum RBL67 were previously shown to produce antimicrobial proteinaceous compounds (microcin B17 and thermophilicin B67, respectively) active in vitro against a panel of Salmonella strains recently isolated from clinical cases in Switzerland. In this study, two three-stage intestinal continuous fermentation models of Salmonella colonization inoculated with immobilized faeces of a two-year-old child were implemented to study the effects of the two bacteriocinogenic strains compared with a bacteriocin-negative mutant of strain L1000 on Salmonella growth, as well as gut microbiota composition and metabolic activity. Immobilized E. coli L1000 added to the proximal colon reactor showed a low colonization, and developed preferentially in the distal colon reactor independent of the presence of genetic determinants for microcin B17 production. Surprisingly, E. coli L1000 addition strongly stimulated Salmonella growth in all three reactors. In contrast, B. thermophilum RBL67 added in a second phase stabilized at high levels in all reactors, but could not inhibit Salmonella already present at a high level (>107 c.f.u. ml−1) when the probiotic was added. Inulin added at the end of fermentation induced a strong bifidogenic effect in all three colon reactors and a significant increase of Salmonella counts in the distal colon reactor. Our data show that under the simulated child colonic conditions, the microcin B17 production phenotype does not correlate with inhibition of Salmonella but leads to a better colonization of E. coli L1000 in the distal colon reactor. We conclude that in vitro models with complex and complete gut microbiota are required to accurately assess the potential and efficacy of probiotics with respect to Salmonella colonization in the gut.


2012 ◽  
Vol 51 (8) ◽  
pp. 1606-1616 ◽  
Author(s):  
Rana Imani ◽  
Shahriar Hojjati Emami ◽  
Parisa Rahnama Moshtagh ◽  
Nafiseh Baheiraei ◽  
Ali Mohammad Sharifi

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Julia Isenring ◽  
Annelies Geirnaert ◽  
Christophe Lacroix ◽  
Marc J. A. Stevens

Abstract Background Auto-aggregation is a desired property for probiotic strains because it is suggested to promote colonization of the human intestine, to prevent pathogen infections and to modulate the colonic mucosa. We recently reported the generation of adapted mutants of Lactiplantibacillus plantarum NZ3400, a derivative of the model strain WCFS1, for colonization under adult colonic conditions of PolyFermS continuous intestinal fermentation models. Here we describe and characterize the emerge of an auto-aggregating phenotype in L. plantarum NZ3400 derivatives recovered from the modelled gut microbiota. Results L. plantarum isolates were recovered from reactor effluent of four different adult microbiota and from spontaneously formed reactor biofilms. Auto-aggregation was observed in L. plantarum recovered from all microbiota and at higher percentage when recovered from biofilm than from effluent. Further, auto-aggregation percentage increased over time of cultivation in the microbiota. Starvation of the gut microbiota by interrupting the inflow of nutritive medium enhanced auto-aggregation, suggesting a link to nutrient availability. Auto-aggregation was lost under standard cultivation conditions for lactobacilli in MRS medium. However, it was reestablished during growth on sucrose and maltose and in a medium that simulates the abiotic gut environment. Remarkably, none of these conditions resulted in an auto-aggregation phenotype in the wild type strain NZ3400 nor other non-aggregating L. plantarum, indicating that auto-aggregation depends on the strain history. Whole genome sequencing analysis did not reveal any mutation responsible for the auto-aggregation phenotype. Transcriptome analysis showed highly significant upregulation of LP_RS05225 (msa) at 4.1–4.4 log2-fold-change and LP_RS05230 (marR) at 4.5–5.4 log2-fold-change in all auto-aggregating strains compared to non-aggregating. These co-expressed genes encode a mannose-specific adhesin protein and transcriptional regulator, respectively. Mapping of the RNA-sequence reads to the promoter region of the msa-marR operon reveled a DNA inversion in this region that is predominant in auto-aggregating but not in non-aggregating strains. This strongly suggests a role of this inversion in the auto-aggregation phenotype. Conclusions L. plantarum NZ3400 adapts to the in vitro colonic environment by developing an auto-aggregation phenotype. Similar aggregation phenotypes may promote gut colonization and efficacy of other probiotics and should be further investigated by using validated continuous models of gut fermentation such as PolyFermS.


Sign in / Sign up

Export Citation Format

Share Document