scholarly journals FGF21 Ameliorates Hepatic Fibrosis by Multiple Mechanisms

Author(s):  
Fanrui Meng ◽  
Mir Hassan Khoso ◽  
Kai Kang ◽  
Qi He ◽  
Yukai Cao ◽  
...  

Abstract Previous study reports that FGF21 could ameliorate hepatic fibrosis, but its mechanisms have not been fully investigated. In this study, three models were used to investigate the mechanism by which FGF21 alleviates liver fibrosis. CCL4 and DMN were respectively used to induce hepatic fibrosis animal models. Our results demonstrated that liver index and liver function were deteriorated in both models. HE and Masson’s staining showed that the damaged tissue architectonics were observed in the mice of both models. Treatment with FGF21 significantly ameliorated these changes. ELISA analysis showed that the serum levels of IL-1β, IL-6 and TNF-α were significantly elevated in both models. However, administration of FGF21 significantly reduced these inflammatory cytokines. RT-PCR and Western blot analysis showed that mRNA and protein expression of collagenI, α-SMA and TGF-β were significantly decreased by treatment with FGF21. PDGF-BB stimulant was used to establish the experimental cell model in HSCs. RT-PCR and Western blot analysis demonstrated that the expression of collagenI and α-SMA were significantly upregulated by this stimulant in model group. Interestingly, our results showed that mRNA and protein expression of leptin were also significantly induced in PDGF-BB treated HSCs. Administration of FGF21 could significantly reduce leptin expression in a dose dependent manner and these effects were reversed in siRNA (against β-klotho) transfected HSCs. Furthermore, the leptin signaling pathways related protein p-ERK/t-ERK, p-STAT3/STAT3 and TGF-β were significantly downregulated by FGF21 treatment in a dose dependent manner. The expression of SOCS3 and Nrf-2 were enhanced by treatment with FGF21. The underlying mechanism may be that FGF21 regulates leptin-STAT3 axis via Nrf-2 and SOCS3 pathway in activated HSCs.

2002 ◽  
pp. 655-661 ◽  
Author(s):  
F Arturi ◽  
I Presta ◽  
D Scarpelli ◽  
JM Bidart ◽  
M Schlumberger ◽  
...  

BACKGROUND: Various clinical and experimental findings support the concept that human chorionic gonadotropin (hCG) can stimulate iodide uptake in thyroid cells. DESIGN: We investigated the molecular mechanisms underlying the effects of hCG on iodide uptake, and particularly its action on the expression of Na+/I- symporter (NIS) mRNA and protein. METHODS: Iodide uptake was analyzed in FTRL-5 cells by measuring (125)I concentrations in cells after a 30-min exposure to 0.1 microCi carrier-free Na (125)I in the presence or absence of hCG or, for control purposes, TSH. Expression of NIS mRNA and NIS protein synthesis were evaluated, respectively, with a semiquantitative 'multiplex' RT-PCR method and Western blot analysis. RESULTS: Iodide uptake was increased by hCG in a dose- and time-dependent manner: maximal effects were observed after 72 h of stimulation. The effect was cAMP dependent and paralleled that of TSH, although it lacked the early cycloheximide-independent component seen with TSH, and its peak effect was lower. Semiquantitative multiplex RT-PCR revealed that hCG produced a significant increase in NIS mRNA levels that was detectable after 4 h and peaked after 48 h. In contrast, in TSH-stimulated FRTL-5 cells, maximum NIS mRNA expression was observed after 24 h of stimulation. Western blot analysis demonstrated that hCG also caused a 2.5-fold increase over basal values in NIS protein levels, which was similar to that observed after TSH stimulation although the peak effects of the latter hormone were less marked and occurred earlier. CONCLUSION: Our data demonstrated that hCG stimulates iodide uptake in FRTL-5 cells by increasing NIS mRNA and protein levels. Thus, the functional status of the thyroid may be influenced by hCG-dependent changes in NIS expression occurring during pregnancy.


1998 ◽  
Vol 274 (5) ◽  
pp. F906-F913 ◽  
Author(s):  
Frank Park ◽  
George Koike ◽  
Allen W. Cowley

Elevations of arginine vasopressin (AVP) binding to renal vasopressin V2 receptors (V2R) enhance water and urea reabsorption in the collecting duct epithelium. This study was designed to quantify the levels of V2R mRNA and protein within the distinct regions of the Sprague-Dawley rat kidney (i.e., the cortex and outer and inner medulla) during 24 and 48 h of water restriction. A competitive reverse transcription-polymerase chain reaction (RT-PCR) assay was developed to quantify changes in the V2R mRNA, in which a deletion mutant RNA transcript was used to control for the efficiency of RT-PCR. Western blot analysis was utilized for the quantification of the V2R protein. The results showed that the steady-state levels of the V2R mRNA decreased in a time-dependent manner in the cortex and outer and inner medulla throughout 48 h of water restriction. Western blot analysis revealed that the V2R protein in the renal cortex decreased after the initial 24 h of water restriction and remained decreased at 48 h. In contrast, outer medullary V2R protein decreased significantly only after 48 h of water restriction, whereas no significant change in the inner medullary V2R protein was observed throughout the 48 h of water restriction. These results suggest that water restriction leads to a regional time-dependent downregulation of the V2R mRNA and protein within the rat kidney. The stability of the plasma membrane V2R protein within the inner medulla may allow for the optimization of urine concentration and minimize water loss during periods of water restriction.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Zhenli Luo ◽  
Wenhuan Xu ◽  
Sai Ma ◽  
Hongyu Qiao ◽  
Lei Gao ◽  
...  

In order to investigate the effects of autophagy induced by rapamycin in the development of atherosclerosis plaque we established murine atherosclerosis model which was induced in ApoE−/− mice by high fat and cholesterol diet (HFD) for 16 weeks. Rapamycin and 3-Methyladenine (MA) were used as autophagy inducer and inhibitor respectively. The plaque areas in aortic artery were detected with HE and Oil Red O staining. Immunohistochemical staining were applied to investigate content of plaque respectively. In contrast to control and 3-MA groups, rapamycin could inhibit atherosclerosis progression. Rapamycin was able to increase collagen content and a-SMA distribution relatively, as well as decrease necrotic core area. Then we used MOVAS and culture with ox-LDL for 72 h to induce smooth muscle-derived foam cell model in vitro. Rapamycin and 3-MA were cultured together respectively. Flow cytometry assay and SA-β-Gal staining experiments were performed to detect survival and senescence of VSMCs. Western blot analysis were utilized to analyze the levels of protein expression. We found that rapamycin could promote ox-LDL-induced VSMCs autophagy survival and alleviate cellular senescence, in comparison to control and 3-MA groups. Western blot analysis showed that rapamycin could upregulate ULK1, ATG13 and downregulate mTORC1 and p53 protein expression.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1896-1896
Author(s):  
Haiming Chen ◽  
Cathy S Wang ◽  
Mingjie Li ◽  
Eric Sanchez ◽  
Jennifer Li ◽  
...  

Abstract Enhanced angiogenesis is a hallmark of solid tumors and hematological malignancies, and anti-angiogenic therapeutic approaches have recently shown significant benefit in the clinic. As a result, many anti-angiogenic agents are currently in early development. Very few methods have been used to evaluate the anti-angiogenic activity of these agents using an ex vivo assay. Unfortunately, currently available methods are both time consuming and costly. We have developed a novel approach to test the anti-angiogenic activity of new agents in a rapid, accurate and inexpensive way. This model consists of using a combined chorioallantoic membrane (CAM) and feather bud (FB) assay. The CAM already has a well developed vascular network and provides an ideal microenvironment and the FB serves as an active biological testing tool for evaluating angiogenesis. FB is a component of epithelial and mesenchymal cells. The method consists of using fertilized chick eggs incubated horizontally at 37.5°C in a humidified incubator and windowed by day 8. Another set of E8 chicken embryonic skins are collected under a dissecting microscope to isolate FB. The FB is treated with drugs or control reagents and implanted onto the CAM. The eggs are sealed with an adhesive tape and incubated for an additional 2–4 days. The endothelial cells of CAM proliferate and migrate into the FB after two days. After 4 days of culture, both blood vessel formation and FB development are determined by microscopy. New blood vessels in FB are analyzed by H&E and immunohistochemical (IHC) staining and expression of endothelial genes and proteins using RT-PCR and Western blot analysis, respectively. First, we establish that the compound being tested should only affect endothelial proliferation or migration and not kill the epithelial and mesenchymal tissues. We have used this new method to investigate several compounds. First, we evaluated the anti-angiogenic agent fumagillin (1μM) and minocycline (100nM). Although neither drug had any cytotoxic effects on the epithelial and mesenchymal tissues when cultured alone, marked inhibition of FB development occurred on the CAM in a dose-dependent fashion with both drugs as determined by microscopy and IHC. In addition, Western blot analysis showed marked inhibition of Tie-2 protein expression in a dose-dependent fashion in the presence of these drugs. Zoledronic acid, a potent bisphosphonate which has recently been shown to harbor anti-angiogenic activity, was found to markedly inhibit FB development in the presence of this drug at a concentration of 10 μM whereas less effect was observed at 2 μM. This drug did not have any direct effect on epithelial and mesenchymal cells when these tissues were cultured alone. We then examined gene and protein expression of the FB cells on CAM that were treated with zoledronic acid. Both FLK-1 and Tie-2 transcript and protein levels were significantly reduced in a dose-dependent fashion following treatment with zoledronic acid as assessed by RT-PCR and Western blot analysis. We are currently testing the potential anti-angiogenic effects of many other novel drugs using this new model. Overall, the present findings demonstrate that the CAM/ FB angiogenesis model is likely to be a reliable, fast, sensitive, and economical system to screen the anti-angiogenic effects of new agents.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chikako Sumi ◽  
Naoto Hirose ◽  
Makoto Yanoshita ◽  
Mami Takano ◽  
Sayuri Nishiyama ◽  
...  

Background. Excessive mechanical stress causes inflammation and destruction of cartilage and is considered one of the cause of osteoarthritis (OA). Expression of semaphorin 3A (Sema3A), which is an axon guidance molecule, has been confirmed in chondrocytes. However, there are few reports about Sema3A in chondrocytes, and the effects of Sema3A on inflammation in the cartilage are poorly understood. The aim of this study was to examine the role of Sema3A in inflammation caused by high magnitude cyclic tensile strain (CTS). Methods. Expression of Sema3A and its receptors neuropilin-1 (NRP-1) and plexin-A1 (PLXA1) in ATDC5 cells was examined by Western blot analysis. ATDC5 cells were subjected to CTS of 0.5 Hz, 10% elongation with added Sema3A for 3 h. Gene expression of IL-1β, TNF-ɑ, COX-2, MMP-3, and MMP-13 was examined by qPCR analysis. Furthermore, the phosphorylation of AKT, ERK, and NF-κB was detected by Western blot analysis. Results. Added Sema3A inhibited the gene expression of inflammatory cytokines upregulated by CTS in a dose-dependent manner. Addition of Sema3A suppressed the activation of AKT, ERK, and NF-κB in a dose-dependent manner. Conclusions. Sema3A reduces the gene expression of inflammatory cytokines by downregulating the activation of AKT, ERK, and NF-κB pathways in ATDC5 cells under CTS.


2005 ◽  
Vol 184 (2) ◽  
pp. 417-425 ◽  
Author(s):  
S Jang ◽  
L S H Yi

A putative non-genomic progesterone receptor was identified by Western blot analysis from the membrane fraction but not the cytosolic fraction of boar spermatozoa using monoclonal antibody (mAb) C-262. When the membrane and the cytosolic fractions of boar liver, kidney, uterus and spermatozoa were analyzed with mAb C-262, protein bands with molecular masses of 86 and 120 kDa were detected from the cytosolic fraction of the uterus, whereas a 71 kDa protein was detected from the membrane fraction of spermatozoa. Apparently, while the 86 and 120 kDa proteins from the uterus correspond to the genomic progesterone receptor isoforms A and B in boar, the 71 kDa protein of the sperm membrane fraction seems to be a novel membrane-associated progesterone receptor. Ligand blot assay of the membrane and the cytosolic fractions of boar spermatozoa performed with peroxidase-conjugated progesterone revealed that only the 71 kDa membrane protein binds specifically to progesterone, reinforcing the results obtained from the Western blot analysis. Also ligand blot assays performed in the presence of mAb C-262 demonstrated that mAb C-262 inhibited progesterone binding to the 71 kDa protein in a dose-dependent manner. Ligand blot assays performed in the presence of free progesterone, RU486 or estrogen revealed that binding of peroxidase-conjugated progesterone to the 71 kDa protein was inhibited by free progesterone and RU486 in a dose-dependent manner but not by estrogen, which further confirms that progesterone binds to the 71 kDa protein specifically. Furthermore, the progesterone-induced acrosome reaction was inhibited by mAb C-262 in a dose-dependent manner. These results strongly imply that spermatozoa possess a progesterone receptor in a membrane-bound form and can be influenced by progesterone via non-genomic progesterone receptor.


Reproduction ◽  
2003 ◽  
pp. 495-507 ◽  
Author(s):  
SA Joshi ◽  
S Shaikh ◽  
S Ranpura ◽  
VV Khole

A rat epididymal protein of 27 kDa was identified using neonatal tolerization. This study reports the production and characterization of a polyclonal antiserum to this protein. ELISA was used to demonstrate that this antiserum reacts strongly with epididymal sperm proteins, but has little or no reactivity with testicular proteins. Western blot analysis revealed that this polyclonal antiserum recognized a 27 kDa protein extracted from the corpus epididymidis as well as from spermatozoa from the corpus and cauda epididymides, and immunostaining revealed the presence of the protein in the corpus to cauda epididymides. Stronger reactivity was observed in the supranuclear region and stereocilla of principal cells of the corpus epididymidis and in the luminal content of the corpus and cauda epididymides. The testicular section showed no reactivity. Treatment with the antiserum resulted in time- and dose-dependent agglutination of rat spermatozoa. By indirect immunofluorescence, the antiserum localized proteins in the mid-piece region of rat spermatozoa. Studies were carried out to determine the age at which the protein first became apparent during postnatal development. The protein was expressed from day 40 onwards, as demonstrated by western blot analysis. The androgen regulation of this protein was ascertained by castration and supplementation studies. Expression of this protein showed a decline starting at day 14 after castration and by day 21 the protein was absent; however, androgen replacement resulted in the reappearance of the protein. The results of these studies indicate that the protein identified is specific to the epididymis, and is regulated by development and androgens. The importance of epididymis-specific proteins that are regulated by androgens in sperm maturation is discussed, and the need to ascertain the sequence of the protein and clone the cognate gene is indicated.


Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Daniel C Morris ◽  
Benjamin Buller ◽  
Manoranjan Santra ◽  
Michael Chopp ◽  
Zheng Gang Zhang

Background: Thymosin beta 4 (Tβ4) is a G-actin sequestering peptide that improves neurological functional outcome when administered 24 hours after onset of stroke to a rat model of embolic stroke. Tβ4 increases the number of oligodendrocyte progenitor cells (OPCs) as well as mature oligodendrocytes (OLs). Mechanisms of Tβ4 induced oligodendrogenesis (OLG) remain unclear. Serum response growth factor (SRF) is a transcriptional factor which binds with ternary complex co-factors to primarily convey an immediate early gene response to influence and orchestrate neuronal migration and differentiation. Hypothesis: We tested the hypothesis that Tβ4 upregulates SRF with subsequent increase in the markers of OL differentiation. Results: We employed a mouse OPC line (N20.1) to investigate the mechanisms of Tβ4-induced OLG. The cells were plated at a density of 100,000 cells/ml and grown in the presence of 0, 12.5, 25 and 50 ng/ml of Tβ4 (RegeneRx Biopharmaceuticals, Inc.) for 14 days (n=3). Western blot analysis revealed that SRF was dose-dependently upregulated by a factor of 4. Quantitative real time PCR and Western blot analysis showed that Tβ4 treatment induced myelin basic protein (MBP) and 2’, 3’-cyclic nucleotide, 3’-phosphodiesterase (CNPase) expression in a dose-dependent manner by ∼2 fold, indicating the stimulation of OLG. In order to independently demonstrate that SRF promotes the differentiation of progenitor cells into mature oligodendrocytes, SRF was over expressed in the N20.1 cells using a plasmid encoding the SRF gene. After six days SRF over expressed N20.1 cells (n=3) demonstrated an increase of expression of MBP (26 ± 3%) and CNPase (23 ± 3%) when compared to cells transfected with an empty expression plasmid (n=3, MBP, 14 ± 3% and CNPase, 10 ± 4%, p<0.05). Conclusions: In this mouse model of OPCs, SRF was upregulated by Tβ4 and may be involved in Tβ4 induced OLG. Further in vivo investigation of SRF is warranted in our rat model of embolic stroke.


2000 ◽  
Vol 278 (2) ◽  
pp. G197-G206 ◽  
Author(s):  
J. Praetorius ◽  
D. Andreasen ◽  
B. L. Jensen ◽  
M. A. Ainsworth ◽  
U. G. Friis ◽  
...  

Na+/H+-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na+-dependent processes to acid extrusion, 2) sensitivity to Na+/H+ exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pHi) was measured on suspensions of isolated acidified murine duodenal epithelial cells loaded with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Expression of NHE isoforms was studied by RT-PCR and Western blot analysis. Reduction of extracellular Na+ concentration ([Na+]o) during pHirecovery decreased H+ efflux to minimally 12.5% of control with a relatively high apparent Michaelis constant for extracellular Na+. The Na+/H+exchange inhibitors ethylisopropylamiloride and amiloride inhibited H+ efflux maximally by 57 and 80%, respectively. NHE1, NHE2, and NHE3 were expressed at the mRNA level (RT-PCR) as well as at the protein level (Western blot analysis). On the basis of the effects of low [Na+]o and inhibitors we propose that acid extrusion in duodenal epithelial cells involves Na+/H+ exchange by isoforms NHE1, NHE2, and NHE3.


2018 ◽  
Vol 49 (3) ◽  
pp. 985-997 ◽  
Author(s):  
Weisen Wang ◽  
Zhi Wang ◽  
Dingyuan Tian ◽  
Xi Zeng ◽  
Yangdong Liu ◽  
...  

Background/Aims: Neointimal hyperplasia is responsible for stenosis, which requires corrective vascular surgery, and is also a major morphological feature of many cardiovascular diseases. This hyperplasia involves the endothelial-to-mesenchymal transition (EndMT). We investigated whether integrin β3 can modulate the EndMT, as well as its underlying mechanism. Methods: Integrin β3 was overexpressed or knocked down in human umbilical vein endothelial cells (HUVECs). The expression of endothelial markers and mesenchymal markers was determined by real-time reverse transcription PCR (RT-PCR), immunofluorescence staining, and western blot analysis. Notch signaling pathway components were detected by real-time RT-PCR and western blot analysis. Cell mobility was evaluated by wound-healing, Transwell, and spreading assays. Fibroblast-specific protein 1 (FSP-1) promoter activity was determined by luciferase assay. Results: Transforming growth factor (TGF)-β1 treatment or integrin β3 overexpression significantly promoted the EndMT by downregulating VE-cadherin and CD31 and upregulating smooth muscle actin α and FSP-1 in HUVECs, and by enhancing cell migration. Knockdown of integrin β3 reversed these effects. Notch signaling was activated after TGF-β1 treatment of HUVECs. Knockdown of integrin β3 suppressed TGF-β1-induced Notch activation and expression of the Notch downstream target FSP-1. Conclusion: Integrin β3 may promote the EndMT in HUVECs through activation of the Notch signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document