scholarly journals Integrin β3 Mediates the Endothelial-to-Mesenchymal Transition via the Notch Pathway

2018 ◽  
Vol 49 (3) ◽  
pp. 985-997 ◽  
Author(s):  
Weisen Wang ◽  
Zhi Wang ◽  
Dingyuan Tian ◽  
Xi Zeng ◽  
Yangdong Liu ◽  
...  

Background/Aims: Neointimal hyperplasia is responsible for stenosis, which requires corrective vascular surgery, and is also a major morphological feature of many cardiovascular diseases. This hyperplasia involves the endothelial-to-mesenchymal transition (EndMT). We investigated whether integrin β3 can modulate the EndMT, as well as its underlying mechanism. Methods: Integrin β3 was overexpressed or knocked down in human umbilical vein endothelial cells (HUVECs). The expression of endothelial markers and mesenchymal markers was determined by real-time reverse transcription PCR (RT-PCR), immunofluorescence staining, and western blot analysis. Notch signaling pathway components were detected by real-time RT-PCR and western blot analysis. Cell mobility was evaluated by wound-healing, Transwell, and spreading assays. Fibroblast-specific protein 1 (FSP-1) promoter activity was determined by luciferase assay. Results: Transforming growth factor (TGF)-β1 treatment or integrin β3 overexpression significantly promoted the EndMT by downregulating VE-cadherin and CD31 and upregulating smooth muscle actin α and FSP-1 in HUVECs, and by enhancing cell migration. Knockdown of integrin β3 reversed these effects. Notch signaling was activated after TGF-β1 treatment of HUVECs. Knockdown of integrin β3 suppressed TGF-β1-induced Notch activation and expression of the Notch downstream target FSP-1. Conclusion: Integrin β3 may promote the EndMT in HUVECs through activation of the Notch signaling pathway.

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Varun Nagpal ◽  
Mesut Eren ◽  
Marissa A Michaels ◽  
Douglas E Vaughan

Introduction: Fibroblast-like cells derived from aberrant activation of endothelial-to-mesenchymal transition (EndMT) are an important contributor to cardiac fibrosis. TGF-beta signaling plays a pivotal role in the induction of EndMT and cardiac fibrosis. Our recent studies have shown that specific miRNAs are differentially regulated during TGF-beta-induced EndMT and blocking TGF-beta-receptor I (TbetaR1) kinase inhibits TGF-beta-induced EndMT. Hypothesis: We hypothesize that miRNAs that promote EndMT will potentially exacerbate cardiac fibrosis, and knockdown of these miRNAs will attenuate EndMT-mediated cardiac fibrosis. Results and Methods: We investigated the levels of miRNAs and profibrotic markers in the failing human myocardium compared to healthy human heart tissue. Our results indicate that miRNAs upregulated during EndMT were significantly elevated in the failing human myocardium. In addition, failing human myocardium exhibited significant upregulation of profibrotic markers including alpha-SMA, Col1 and PAI-1. Next, primary cultures of mouse cardiac endothelial cells treated with TGF-beta or SB431542 (TbetaR1 kinase inhibitor) were evaluated for EndMT markers using bright field microscopy, fluorescence microscopy, western blot analysis and qRT PCR. We observed that blocking TbetaR1 kinase by SB431542 inhibits specific miRNAs which were upregulated during TGF-beta-induced EndMT. In addition, in silico analysis revealed that these miRNAs target key TGF-beta effectors, which was further confirmed by western blot analysis. Furthermore, overexpression of specific miRNAs using mimics resulted in the induction of EndMT. Next, miRNA mimics in combination with TGF-beta substantially potentiated TGF-beta-induced EndMT. Finally, knockdown of these miRNAs using inhibitors or Cy3-tagged antagomiRs significantly attenuated TGF-beta-induced cardiac EndMT. Conclusions: Our results indicate that TbetaR1 kinase-induced expression of miRNAs is involved in cardiac EndMT. Thus, miRNAs may promote profibrotic signaling in EndMT-derived fibroblast-like cells, which may contribute to fibrogenesis in the human heart.


2015 ◽  
Vol 36 (1) ◽  
pp. 191-200 ◽  
Author(s):  
Xiao Chen ◽  
Jiejie Cai ◽  
Xi Zhou ◽  
Lingzhi Chen ◽  
Yongsheng Gong ◽  
...  

Background: Fibrosis results in excessive buildup of extracellular matrix proteins along with abnormalities in structure and is partly derived by a process involving transforming growth factor β (TGF-β) called endothelial-to-mesenchymal transition (EndMT). We investigated whether the aldosterone receptor-blocker spironolactone could abrogate TGF-β-induced fibrosis in EndMT and the underlying mechanism. Methods: Human umbilical vein endothelial cells (HUVECs) were divided into 5 groups for treatment: blank; vehicle control; TGF-β (10 ng/ml); spironolactone (1 μM)+TGF-β; and spironolactone+TGF-β+DAPT (10 μM). Cell chemotaxis was assayed by transwell assay. The expression of CD31 and vimentin was determined by Immunofluorescence staining and western blot analysis. Notch1 protein level was detected by western blot analysis. Results: Spironolactone significantly prevented TGF-β-stimulated EndMT by down-regulate vimentin and up-regulate CD31 in HUVECs (p<0.01).It inhibited cell migration during EndMT (p<0.01). The protective effect of spironolactone against EndMT could be attenuated by blocking the Notch signal pathway with DAPT (p<0.01). Notch signaling was activated and cross-interacted with TGF-β and spironolactone in regulating EndMT in HUVECs and reversed the spironolactone-related signaling by abrogating the antifibrotic actions with decreased Notch1 protein expression (p<0.01). Conclusion: Spironolactone may have a protective role in TGF-β-induced EndMT in HUVECs mediated by the Notch signal pathway.


2021 ◽  
pp. 096032712110061
Author(s):  
D Cao ◽  
L Chu ◽  
Z Xu ◽  
J Gong ◽  
R Deng ◽  
...  

Background: Visfatin acts as an oncogenic factor in numerous tumors through a variety of cellular processes. Visfatin has been revealed to promote cell migration and invasion in gastric cancer (GC). Snai1 is a well-known regulator of EMT process in cancers. However, the relationship between visfatin and snai1 in GC remains unclear. The current study aimed to explore the role of visfatin in GC. Methods: The RT-qPCR and western blot analysis were used to measure RNA and protein levels, respectively. The cell migration and invasion were tested by Trans-well assays and western blot analysis. Results: Visfatin showed upregulation in GC cells. Additionally, Visfatin with increasing concentration facilitated epithelial-mesenchymal transition (EMT) process by increasing E-cadherin and reducing N-cadherin and Vimentin protein levels in GC cells. Moreover, endogenous overexpression and knockdown of visfatin promoted and inhibited migratory and invasive abilities of GC cells, respectively. Then, we found that snai1 protein level was positively regulated by visfatin in GC cells. In addition, visfatin activated the NF-κB signaling to modulate snai1 protein expression. Furthermore, the silencing of snai1 counteracted the promotive impact of visfatin on cell migration, invasion and EMT process in GC. Conclusion: Visfatin facilitates cell migration, invasion and EMT process by targeting snai1 via the NF-κB signaling, which provides a potential insight for the treatment of GC.


2000 ◽  
Vol 278 (2) ◽  
pp. G197-G206 ◽  
Author(s):  
J. Praetorius ◽  
D. Andreasen ◽  
B. L. Jensen ◽  
M. A. Ainsworth ◽  
U. G. Friis ◽  
...  

Na+/H+-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na+-dependent processes to acid extrusion, 2) sensitivity to Na+/H+ exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pHi) was measured on suspensions of isolated acidified murine duodenal epithelial cells loaded with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Expression of NHE isoforms was studied by RT-PCR and Western blot analysis. Reduction of extracellular Na+ concentration ([Na+]o) during pHirecovery decreased H+ efflux to minimally 12.5% of control with a relatively high apparent Michaelis constant for extracellular Na+. The Na+/H+exchange inhibitors ethylisopropylamiloride and amiloride inhibited H+ efflux maximally by 57 and 80%, respectively. NHE1, NHE2, and NHE3 were expressed at the mRNA level (RT-PCR) as well as at the protein level (Western blot analysis). On the basis of the effects of low [Na+]o and inhibitors we propose that acid extrusion in duodenal epithelial cells involves Na+/H+ exchange by isoforms NHE1, NHE2, and NHE3.


Marine Drugs ◽  
2018 ◽  
Vol 16 (9) ◽  
pp. 323 ◽  
Author(s):  
Hyun Jung ◽  
Dae-Sung Lee ◽  
Seong Park ◽  
Jung Choi ◽  
Won-Kyo Jung ◽  
...  

Nasal polyps (NPs) are a multifactorial disorder associated with a chronic inflammatory state of the nasal mucosa. Fucoxanthin (Fx) is a characteristic orange carotenoid obtained from brown algae and has diverse immunological properties. The present study investigated whether Fx inhibits fibrosis-related effects in nasal polyp-derived fibroblasts (NPDFs) and elucidated the molecular signaling pathways involved. The production of collagen type I (Col-1) was investigated in NP tissue via immunohistochemistry and western blot analysis. NPDFs were treated with transforming growth factor (TGF)-β1 (1 ng/mL) in the presence or absence of Fx (5–30 µM). The levels of α-smooth muscle actin (α-SMA), Col-1, and phosphorylated (p)-Smad 2/3, signal protein-1 (SP-1), MAPKs (mitogen-activated protein kinases), and Akt were measured by western blot analysis. The expression of Col-1 was detected in NP tissues. TGF-β1 stimulated the production of α-SMA and Col-1, and stimulated the contraction of collagen gel. However, pretreatment with Fx attenuated these effects. Furthermore, these inhibitory effects were mediated through modulation of both Smad 2/3 and Akt/SP-1 signaling pathways in TGF-β1-induced NPDFs. The results from the present study suggest that Fx may be a novel anti-fibrotic agent for the treatment of NP formation.


2019 ◽  
Vol 48 (3) ◽  
pp. 030006051988944 ◽  
Author(s):  
Yunfu Lv ◽  
Yejuan Li ◽  
Ning Liu ◽  
Yonghong Dong ◽  
Jie Deng

Objectives To evaluate the Th1/Th2 cell profile in spleens of cirrhotic and hypersplenic rats by investigating the expression of Th1-associated chemokine receptors CXCR3, CCR5 and Th2-associated chemokine receptor CCR3. Methods Experimental liver cirrhosis and hypersplenism were induced in rats by the intragastric administration of carbon tetrachloride (CCl4; 40% solution [0.3 ml/100g, twice/week for 8 weeks]) and confirmed by pathology and hemogram. Presence of the three chemokine receptors was investigated by real-time polymerase chain reaction (RT-PCR), immunohistochemical staining, and western blot analysis. Results By comparison with control animals (n=10), RT-PCR demonstrated that CXCR3 and CCR5-mRNA levels were significantly elevated in the hypersplenic rats (n=26) and CCR3-mRNA levels were lower. Immunohistochemical staining showed that by comparison with controls, the mean density of the Th1-associated CXCR3 and CCR5 receptors was significantly increased but there was no difference between groups in Th2-associated CCR3 receptors. Western blot analysis showed that by comparison with controls, hypersplenic rats had higher levels of CXCR3 and CCR5 protein but lower levels of CCR3 protein. Conclusions The abnormal expression of Th1-associated chemokine receptors in spleens of rats with cirrhosis and hypersplenism induced by CCL4 suggests that a functional imbalance between Th1/Th2 cells may play a role in the pathogenesis of hypersplenism.


2019 ◽  
Vol 51 (10) ◽  
pp. 1008-1015 ◽  
Author(s):  
Shusheng Qiu ◽  
Wei Hu ◽  
Qiuhong Ma ◽  
Yi Zhao ◽  
Liang Li ◽  
...  

Abstract Tumor necrosis factor α-induced protein 8-like-1 (TIPE1) functions as an activator or a repressor in a tumor cell type-specific manner. However, the role of TIPE1 in breast cancer, especially regarding metastasis, is unknown. In this study, we aimed to investigate the TIPE1 expression in breast cancer tissues, the biological functions, and the underlying mechanisms of TIPE1 regarding the metastatic properties of breast cancer cells. The results of immunohistochemical staining and western blot analysis indicated that TIPE1 expression was associated with tumor size and lymph node metastasis, and the expression of TIPE1 was downregulated in the tissues of patients with lymph node metastasis. Transwell and wound healing assay results showed that TIPE1 inhibited the invasive and migratory capacities of breast cancer cells. Moreover, the epithelial-mesenchymal transition (EMT) was suppressed in TIPE1-overexpressing cells, as demonstrated by western blot analysis. In addition, western blot analysis also showed that TIPE1 reduced the expression levels of MMP2 and MMP9 and decreased the phosphorylation level of ERK. These results suggested that TIPE1 might suppress the invasion and migration of breast cancer cells and inhibit EMT primarily via the ERK signaling pathway. Our findings revealed the anti-tumor metastasis role of TIPE1 in breast cancer and TIPE1 might be a new candidate prognostic indicator and a potential molecular target for the treatment of breast cancer.


2005 ◽  
Vol 2005 (4) ◽  
pp. 185-193 ◽  
Author(s):  
Jun-Hua Li ◽  
Jie-Ping Yu ◽  
Hong-Gang Yu ◽  
Xi-Ming Xu ◽  
Liang-Liang Yu ◽  
...  

Proinflammatory mediators are important in the pathogenesis of IBD, which are regulated by activation of NF-κB. The aim of this study was to investigate whether melatonin reduces inflammatory injury and inhibits proinflammatory molecule and NF-κB in rats with colitis. Rat colitis model was established by TNBS enema. NF-κB p65, TNF-α, ICAM-1, and IκBα in colon tissue were examined by immunohistochemistry, EMSA, RT-PCR, and Western blot analysis. Expression of proinflammatory molecule and activation of NF-κB were upregulated and IκB level decreased in rats with colitis. Melatonin reduces colonic inflammatory injury through downregulating proinflammatory molecule mediated by NF-κB inhibition and blockade of IκBα degradation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4281-4281
Author(s):  
Zhiqing Wang ◽  
Yana Zhang ◽  
Arabinda Mandal ◽  
Jian Zhang ◽  
Francis J. Giles ◽  
...  

Abstract SLLP1 is a unique non-bacteriolytic c-lysozyme-like protein isolated from human spermatozoa. Antisera to SLLP1 blocks binding in the hamster egg penetration assay, suggesting that SLLP1 may be involved in sperm/egg adhesion. A recent study by dot blot analysis on RNA showed that SLLP1 was expressed only in the testis and in Burkitt lymphoma Raji cell line, suggesting that further studies are warranted to determine and characterize SLLP1 expression in tumor cells, in particular, fresh tumor specimens. Using a pair of sequence-specific primers in RT-PCR, we found that SLLP1 transcripts could be detected in 5/8 myeloma cell lines, suggesting that SLLP1 may be expressed in tumor cells from some hematologic malignancies. When we applied the investigations to 52 primary hematologic malignant specimens, SLLP1 transcripts were detected in 6/17 myeloma, 4/14 CML, 3/11 CLL, 2/9 AML and 0/1 hairy cell leukemia. In contrast, SLLP1 transcripts were not detected in the peripheral blood (n=12) or bone marrow (n=3) from any healthy donors. The specificity of the PCR products was confirmed by either sequence analysis or restriction digest with Pvu II. SLLP1 transcripts were translated into its corresponding protein in these tumor cells. Using tumor cell lysate in Western blot analysis, we detected SLLP1 protein in the myeloma cell lines and also in fresh malignant specimens, although positivities were only observed in specimens with high RT-PCR signals. All PCR-negative specimens were also negative in Western blot analysis. The specificity of the Western blot signals were confirmed in all cases by blocking assays with a high concentration of recombinant SLLP1 protein. We next investigated the expression of SLLP1 in a large panel of normal tissues using RT-PCR and real time quantitative PCR. Both approaches showed that SLLP1 is a novel Cancer-Testis antigen in hematologic malignancies. SLLP1 was detected, at a level of 8206 copies/0.25 mcg total RNA, only in normal testis. We also found that the SLLP1 mRNA copy numbers in fresh hematologic tumor specimens were up to 2316 copies/0.25 mcg total RNA, i.e. more than 25% of the level found in normal testis. We cloned and generated SLLP1 recombinant protein from E coli and used the purified recombinant SLLP1 in an ELISA system to detect anti-SLLP1 antibodies. Using sera from 24 healthy donors and the mean + 2SD as the cut-off signal intensities, we found that high titer IgG antibodies directed at SLLP1 could be detected in the sera from 2/9 AML, 5/23 CLL, 6/27 CML and 14/51 myeloma patients. The specificity of the antibodies was confirmed in Western blot analysis. Probably due to the decreased sensitivity of the detection system in Western blot analysis, only 1/2 AML, 3/5 CLL, 4/6 CML and 7/14 myeloma SLLP1 antibody+ sera produced a signal in the Western blot analysis. Interesting, IgG2 was by far the commonest SLLP1 antibodies in these patients. There was a good correlation between SLLP1 gene expression and immune responses. In summary, SLLP1 is a novel CT antigen in hematologic malignancies and is capable of eliciting B-cell immune responses in vivo in cancer-bearing patients. Our results support SLLP1 as a protein target appropriate for further in vitro study to define its suitability for immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document