scholarly journals Genome-Wide Comparative Analysis of the β-glucosidase Family in Five Rosaceae Species and their Potential Role on Lignification of Stone Cells in Chinese White Pear

2020 ◽  
Author(s):  
Han Wang ◽  
Yang Zhang ◽  
Yu Zhao ◽  
Wenlong Han ◽  
Jinjin Lu ◽  
...  

Abstract Background: The β-glucosidase BGLU in the glycoside hydrolase family 1 (GH1) is involved in the sugar metabolism of the plant and plays an important role in maintaining the normal physiological function of the plant. Recent studies had shown that β-glucosidase was involved in plant lignification. The lignification in pear fruit is closely related to the formation of pear stone cells, but the BGLU genes family has not been identified in pears.Result: A total of 343 BGLU genes were identified from five species of Rosaceae (Pyrus bretschneideri, Prunus mume, Malus domestica, Prunus avium, Fragaria vesca). According to phylogenetic analysis, 50 PbBGLUs were divided into 8 groups. 298 syntenic pairs were found in intra- and inter-species collinear analysis of five Rosaceae species, found that pears and apples had more syntenic pairs than pear and the other three Rosaceae species. The Ka/Ks analysis of duplication PbBGLU genes in pear indicated that the main mode of expansion of the PbBGLUs was segmental replication and was mainly affected by purification. qRT-PCR showed that the three gene expression patterns of PbBGLU1, PbBGLU15 and PbBGLU16 were basically consistent with the change trend of pear fruit lignin and stone cell content, and may be involved in lignification and stone cell development of pear fruit. Subcellular localization showed that these three candidate genes were all located on the cell wall.Conclusion: In this study, a genome-wide analysis of BGLU genes in five Rosaceae species was carried out, and three candidate genes related to lignification and stone cell development of pear fruits were identified, which laid the foundation for a deeper understanding of the function of BGLU genes in pear fruits and potential in changing pear fruit quality.

2019 ◽  
Author(s):  
Chunxin Liu ◽  
Xin Qiao ◽  
Qionghou Li ◽  
Weiwei Zeng ◽  
Shuwei Wei ◽  
...  

Abstract Background: The BAHD acyltransferase superfamily exhibits various biological roles in plants, including regulating fruit quality, catalytic synthesizing of terpene, phenolics and esters, and improving stress resistance. However, the copy numbers, expression characteristics and associations with fruit aroma formation of the BAHD genes remain unclear. Results: In total, 717 BAHD genes were obtained from the genomes of seven Rosaceae , ( Pyrus bretschneideri , Malus domestica , Prunus avium , Prunus persica , Fragaria vesca , Pyrus communis and Rubus occidentalis ). Based on the detailed phylogenetic analysis and classifications in model plants, we divided the BAHD family genes into seven groups, I-a, I-b, II-a, II-b, III-a, IV and V. An inter-species synteny analysis revealed the ancient origin of BAHD superfamily with 78 syntenic gene pairs were detected among the seven Rosaceae species. Different types of gene duplication events jointly drive the expansion of BAHD superfamily, and purifying selection dominates the evolution of BAHD genes supported by the small Ka/Ks ratios . Based on the correlation analysis between the ester content and expression levels of BAHD genes at different developmental stages, four candidate genes were selected for verification as assessed by qRT-PCR. The result implied that Pbr020016.1 , Pbr019034.1 , Pbr014028.1 and Pbr029551.1 are important candidate genes involved in aroma formation during pear fruit development. Conclusion: We have thoroughly identified the BAHD superfamily genes and performed a comprehensive comparative analysis of their phylogenetic relationships, expansion patterns, and expression characteristics in seven Rosaceae species, and we also obtained four candidate genes involved in aroma synthesis in pear fruit . These results provide a theoretical basis for future studies of the specific biological functions of BAHD superfamily members and the improvement of pear fruit quality. Keywords : BAHD, pear, evolution, Rosaceae, transcriptome, volatile esters


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chunxin Liu ◽  
Xin Qiao ◽  
Qionghou Li ◽  
Weiwei Zeng ◽  
Shuwei Wei ◽  
...  

Abstract Background The BAHD acyltransferase superfamily exhibits various biological roles in plants, including regulating fruit quality, catalytic synthesizing of terpene, phenolics and esters, and improving stress resistance. However, the copy numbers, expression characteristics and associations with fruit aroma formation of the BAHD genes remain unclear. Results In total, 717 BAHD genes were obtained from the genomes of seven Rosaceae, (Pyrus bretschneideri, Malus domestica, Prunus avium, Prunus persica, Fragaria vesca, Pyrus communis and Rubus occidentalis). Based on the detailed phylogenetic analysis and classifications in model plants, we divided the BAHD family genes into seven groups, I-a, I-b, II-a, II-b, III-a, IV and V. An inter-species synteny analysis revealed the ancient origin of BAHD superfamily with 78 syntenic gene pairs were detected among the seven Rosaceae species. Different types of gene duplication events jointly drive the expansion of BAHD superfamily, and purifying selection dominates the evolution of BAHD genes supported by the small Ka/Ks ratios. Based on the correlation analysis between the ester content and expression levels of BAHD genes at different developmental stages, four candidate genes were selected for verification as assessed by qRT-PCR. The result implied that Pbr020016.1, Pbr019034.1, Pbr014028.1 and Pbr029551.1 are important candidate genes involved in aroma formation during pear fruit development. Conclusion We have thoroughly identified the BAHD superfamily genes and performed a comprehensive comparative analysis of their phylogenetic relationships, expansion patterns, and expression characteristics in seven Rosaceae species, and we also obtained four candidate genes involved in aroma synthesis in pear fruit. These results provide a theoretical basis for future studies of the specific biological functions of BAHD superfamily members and the improvement of pear fruit quality.


2019 ◽  
Author(s):  
Chunxin Liu ◽  
Xin Qiao ◽  
Qionghou Li ◽  
Weiwei Zeng ◽  
Shuwei Wei ◽  
...  

Abstract Background: The BAHD acyltransferase superfamily exhibits various biological roles in plants, including regulating fruit quality, catalytic synthesizing of terpene, phenolics and esters, and improving stress resistance. However, the copy numbers, expression characteristics and associations with fruit aroma formation of the BAHD genes remain unclear. Results: In total, 717 BAHD genes were obtained from the genomes of seven Rosaceae, ( Pyrus bretschneideri , Malus domestica , Prunus avium , Prunus persica , Fragaria vesca , Pyrus communis and Rubus occidentalis ). Based on the classifications in model plants, we divided the BAHD family genes into seven groups, I-a, I-b, II-a, II-b, III-a, IV and V. An intra-species synteny analysis detected 78 syntenic gene pairs among the seven Rosaceae species. Dispersed gene duplication occurred frequently in all the investigated species. Different modes of duplicated gene pairs identified in each investigated species revealed that the Ka/Ks ratios were less than one, indicating that they evolved through purifying selection. Based on the correlation analysis between the ester content and expression levels of BAHD genes at different developmental stages, we selected five genes for verification as assessed by qRT-PCR. Pbr020016.1 , Pbr019034.1 , Pbr014028.1 and Pbr029551.1 are important candidate genes involved in aroma formation during pear fruit development. Conclusion: We have thoroughly annotated the BAHD superfamily genes and performed a comprehensive comparative analysis of their colinearity, phylogenetic relationships and gene duplication patterns in seven Rosaceae species, and we also obtained four candidate genes involved in aroma synthesis in pear fruit. These results provide a theoretical basis for future studies of the specific biological functions of BAHD superfamily members and the improvement of pear fruit quality. Keywords : BAHD, pear, evolution, Rosaceae, transcriptome, volatile esters


2019 ◽  
Author(s):  
Chunxin Liu ◽  
Xin Qiao ◽  
Qionghou Li ◽  
Weiwei Zeng ◽  
Shuwei Wei ◽  
...  

Abstract Background: The BAHD acyltransferase superfamily exhibits various biological roles in plants, including regulation the fruit quality; catalytic synthesis of terpene, phenolic and esters; improvement of stress resistance. However, the copy number, evolutionary history and potential functions of the BAHD superfamily genes in the genome sequenced Rosaceae species remains unclear. Results: Totally, 755 BAHD genes were obtained from the genomes of seven Rosaceae fruit species (Pyrus bretschneideri, Malus domestica, Prunus avium, Prunus persica, Fragaria vesca, Pyrus communis and Rubus occidentalis). Based on the classification results from model plants, we divided the BAHD family genes into seven subgroups (I-a, I-b, II-a, II-b, III-a, IV, V). Based on intra-species synteny analysis, 61 syntenic gene pairs were detected from the six Rosaceae species. Dispersed gene duplication occurred frequently in all investigated species. Different modes of duplicated gene pairs identified in each investigated species show that the Ka/Ks is less than one, indicating they evolved through purifying selection. Based on the correlation analysis between ester content and expression level of BAHD genes at different development stages, we selected five genes to perform qRT-PCR verification, and the results showed that Pbr020016.1, Pbr019034.1, Pbr014028.1 and Pbr029551.1 are the important candidate genes involved in aroma formation during pear fruit development. Conclusion: We have thoroughly annotated the BAHD superfamily genes and made a comprehensive comparative analysis of their colinearity, phylogenetic relationships and gene duplication patterns in the seven Rosaceae species, and also obtained four candidate genes might be involved in the aroma synthesis in the pear fruit. These presented results provide a theoretical basis for the future studies of the specific biological functions of BAHD superfamily members and the improvement of pear fruit quality. Keywords: BAHD, pear, evolution, Rosaceae, transcriptome, volatile esters


2017 ◽  
Vol 7 (7) ◽  
pp. 2391-2403 ◽  
Author(s):  
Amanda S Lobell ◽  
Rachel R Kaspari ◽  
Yazmin L Serrano Negron ◽  
Susan T Harbison

Abstract Ovariole number has a direct role in the number of eggs produced by an insect, suggesting that it is a key morphological fitness trait. Many studies have documented the variability of ovariole number and its relationship to other fitness and life-history traits in natural populations of Drosophila. However, the genes contributing to this variability are largely unknown. Here, we conducted a genome-wide association study of ovariole number in a natural population of flies. Using mutations and RNAi-mediated knockdown, we confirmed the effects of 24 candidate genes on ovariole number, including a novel gene, anneboleyn (formerly CG32000), that impacts both ovariole morphology and numbers of offspring produced. We also identified pleiotropic genes between ovariole number traits and sleep and activity behavior. While few polymorphisms overlapped between sleep parameters and ovariole number, 39 candidate genes were nevertheless in common. We verified the effects of seven genes on both ovariole number and sleep: bin3, blot, CG42389, kirre, slim, VAChT, and zfh1. Linkage disequilibrium among the polymorphisms in these common genes was low, suggesting that these polymorphisms may evolve independently.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 192
Author(s):  
Xinghai Duan ◽  
Bingxing An ◽  
Lili Du ◽  
Tianpeng Chang ◽  
Mang Liang ◽  
...  

The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight–age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters’ mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 318
Author(s):  
Tae-Ho Ham ◽  
Yebin Kwon ◽  
Yoonjung Lee ◽  
Jisu Choi ◽  
Joohyun Lee

We conducted a genome-wide association study (GWAS) of cold tolerance in a collection of 127 rice accessions, including 57 Korean landraces at the seedling stage. Cold tolerance of rice seedlings was evaluated in a growth chamber under controlled conditions and scored on a 0–9 scale, based on their low-temperature response and subsequent recovery. GWAS, together with principal component analysis (PCA) and kinship matrix analysis, revealed four quantitative trait loci (QTLs) on chromosomes 1, 4, and 5 that explained 16.5% to 18.5% of the variance in cold tolerance. The genomic region underlying the QTL on chromosome four overlapped with a previously reported QTL associated with cold tolerance in rice seedlings. Similarly, one of the QTLs identified on chromosome five overlapped with a previously reported QTL associated with seedling vigor. Subsequent bioinformatic and haplotype analyses revealed three candidate genes affecting cold tolerance within the linkage disequilibrium (LD) block of these QTLs: Os01g0357800, encoding a pentatricopeptide repeat (PPR) domain-containing protein; Os05g0171300, encoding a plastidial ADP-glucose transporter; and Os05g0400200, encoding a retrotransposon protein, Ty1-copia subclass. The detected QTLs and further evaluation of these candidate genes in the future will provide strategies for developing cold-tolerant rice in breeding programs.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sadhana Singh ◽  
Himabindu Kudapa ◽  
Vanika Garg ◽  
Rajeev K. Varshney

Abstract Background Chickpea, pigeonpea, and groundnut are the primary legume crops of semi-arid tropics (SAT) and their global productivity is severely affected by drought stress. The plant-specific NAC (NAM - no apical meristem, ATAF - Arabidopsis transcription activation factor, and CUC - cup-shaped cotyledon) transcription factor family is known to be involved in majority of abiotic stresses, especially in the drought stress tolerance mechanism. Despite the knowledge available regarding NAC function, not much information is available on NAC genes in SAT legume crops. Results In this study, genome-wide NAC proteins – 72, 96, and 166 have been identified from the genomes of chickpea, pigeonpea, and groundnut, respectively, and later grouped into 10 clusters in chickpea and pigeonpea, while 12 clusters in groundnut. Phylogeny with well-known stress-responsive NACs in Arabidopsis thaliana, Oryza sativa (rice), Medicago truncatula, and Glycine max (soybean) enabled prediction of putative stress-responsive NACs in chickpea (22), pigeonpea (31), and groundnut (33). Transcriptome data revealed putative stress-responsive NACs at various developmental stages that showed differential expression patterns in the different tissues studied. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression patterns of selected stress-responsive, Ca_NAC (Cicer arietinum - 14), Cc_NAC (Cajanus cajan - 15), and Ah_NAC (Arachis hypogaea - 14) genes using drought-stressed and well-watered root tissues from two contrasting drought-responsive genotypes of each of the three legumes. Based on expression analysis, Ca_06899, Ca_18090, Ca_22941, Ca_04337, Ca_04069, Ca_04233, Ca_12660, Ca_16379, Ca_16946, and Ca_21186; Cc_26125, Cc_43030, Cc_43785, Cc_43786, Cc_22429, and Cc_22430; Ah_ann1.G1V3KR.2, Ah_ann1.MI72XM.2, Ah_ann1.V0X4SV.1, Ah_ann1.FU1JML.2, and Ah_ann1.8AKD3R.1 were identified as potential drought stress-responsive candidate genes. Conclusion As NAC genes are known to play role in several physiological and biological activities, a more comprehensive study on genome-wide identification and expression analyses of the NAC proteins have been carried out in chickpea, pigeonpea and groundnut. We have identified a total of 21 potential drought-responsive NAC genes in these legumes. These genes displayed correlation between gene expression, transcriptional regulation, and better tolerance against drought. The identified candidate genes, after validation, may serve as a useful resource for molecular breeding for drought tolerance in the SAT legume crops.


2021 ◽  
Vol 11 (1) ◽  
pp. 59
Author(s):  
Kirsten Voorhies ◽  
Joanne E. Sordillo ◽  
Michael McGeachie ◽  
Elizabeth Ampleford ◽  
Alberta L. Wang ◽  
...  

An unaddressed and important issue is the role age plays in modulating response to short acting β2-agonists in individuals with asthma. The objective of this study was to identify whether age modifies genetic associations of single nucleotide polymorphisms (SNPs) with bronchodilator response (BDR) to β2-agonists. Using three cohorts with a total of 892 subjects, we ran a genome wide interaction study (GWIS) for each cohort to examine SNP by age interactions with BDR. A fixed effect meta-analysis was used to combine the results. In order to determine if previously identified BDR SNPs had an age interaction, we also examined 16 polymorphisms in candidate genes from two published genome wide association studies (GWAS) of BDR. There were no significant SNP by age interactions on BDR using the genome wide significance level of 5 × 10−8. Using a suggestive significance level of 5 × 10−6, three interactions, including one for a SNP within PRAG1 (rs4840337), were significant and replicated at the significance level of 0.05. Considering candidate genes from two previous GWAS of BDR, three SNPs (rs10476900 (near ADRB2) [p-value = 0.009], rs10827492 (CREM) [p-value = 0.02], and rs72646209 (NCOA3) [p-value = 0.02]) had a marginally significant interaction with age on BDR (p < 0.05). Our results suggest age may be an important modifier of genetic associations for BDR in asthma.


Sign in / Sign up

Export Citation Format

Share Document