scholarly journals A Non-conventional Approach to Understanding the Geographical Influence on the Transmission of SARS-CoV-2 and IFR

Author(s):  
Udaya Ketipearachchi

Abstract To understand and fight SARS-CoV-2, different models are needed (i.e. one model cannot answer all the questions). A mathematical model can be an effective tool for understanding SARS-CoV-2 transmission and evaluating possible strategies. Here, we present two models based on the indirect transmission of SARS-CoV-2 that explain the impact of ambient temperature and air pollution on SARS-CoV-2 outdoor and indoor behavior. These models discuss temperaturebased lethality of SARS-CoV-2 and its spread. In addition, if SARS-CoV-2 is transmitted through particulate matter or surfaces, the temperature effect on its half-life is discussed. The dew point should also be considered instead of just the humidity factor, since a combination of temperature and humidity may play an important role in SARS-CoV-2 transmission.

2021 ◽  
Author(s):  
Udaya Ketipearachchi

Abstract Transmission of SARS-CoV-2 is not well understood and different models are needed (i.e. one model cannot answer it all) to understand and fight this disease. Here, we present two models based on indirect transmission of SARS-CoV-2 that explain the influence of ambient temperature and air pollution on outdoor and indoor behavior of SARS-CoV-2. These models discuss the temperature dependency of the lethality of SARS-CoV-2 and its spread during indoor and outdoor exposure. Furthermore, the temperature effect on the half-life of SARS-CoV-2 is discussed if the SARSCoV-2 is transmitted via particulate matter or surfaces. It is also important to understand the role of dew point instead of the humidity factor alone as the combined effect of temperature and humidity might play a major role in the transmission of SARS-CoV-2 .


2021 ◽  
Author(s):  
UDAYA KETIPEARACHCHI

Abstract Transmission of SARS-CoV-2 is not well understood and different models are needed (i.e. one model cannot answer it all) to understand and fight this disease. Here, we present two models based on indirect transmission of SARS-CoV-2 that explain the influence of ambient temperature and air pollution on outdoor and indoor behavior of SARS-CoV-2. These models discuss the temperature dependency of the lethality of SARS-CoV-2 and its spread during indoor and outdoor exposure. Furthermore, the temperature effect on the half-life of SARS-CoV-2 is discussed if the SARSCoV-2 is transmitted via particulate matter or surfaces. It is also important to understand the role of dew point instead of the humidity factor alone as the combined effect of temperature and humidity might play a major role in the transmission of SARS-CoV-2 .


2021 ◽  
Author(s):  
Udaya Ketipearachchi

Abstract Transmission of SARS-CoV-2 is not well understood and different models are needed (i.e. one model cannot answer it all) to understand and fight this disease. Here, we present two models based on indirect transmission of SARS-CoV-2 that explain the influence of ambient temperature and air pollution on outdoor and indoor behavior of SARS-CoV-2. These models discuss the temperature dependency of the lethality of SARS-CoV-2 and its spread during indoor and outdoor exposure. Furthermore, the temperature effect on the half-life of SARS-CoV-2 is discussed if the SARSCoV-2 is transmitted via particulate matter or surfaces. It is also important to understand the role of dew point instead of the humidity factor alone as the combined effect of temperature and humidity might play a major role in the transmission of SARS-CoV-2 .


2018 ◽  
Vol 34 (8) ◽  
pp. 1354-1360 ◽  
Author(s):  
Ping-Fang Chiu ◽  
Chin-Hua Chang ◽  
Chia-Lin Wu ◽  
Teng-Hsiang Chang ◽  
Chun-Chieh Tsai ◽  
...  

Abstract Background Numerous studies have shown that exposure to air pollution, especially particulate matter (PM) with a diameter <2.5 μm (PM2.5), was associated with various diseases. We tried to determine the impact of PM2.5 and other weather factors on acute lung edema in patients with Stage 5 nondialysis chronic kidney disease (CKD Stage 5-ND). Methods In total, 317 CKD Stage 5-ND (estimated glomerular filtration rate 6.79 ± 4.56 mL/min) patients residing in central Taiwan who developed acute lung edema and initiated long-term dialysis were included in this case-crossover study. Pearson’s correlation test was used to examine the relationship of acute lung edema cases with PM2.5 levels and ambient temperature separately. Results The average PM2.5 level within the 7-day period correlated with acute lung edema incidence in the fall [adjusted odds ratio (OR) 3.23, P = 0.047] and winter (adjusted OR 1.99, P < 0.001). In winter, even a 3-day exposure to PM2.5 was associated with increased risk (adjusted OR 1.55, P < 0.001). The average temperatures within 3 days in spring and summer were correlated positively with the risk (adjusted OR 2.77 P < 0.001 and adjusted OR 2.72, P < 0.001, respectively). In the fall and winter, temperatures were correlated negatively with the risk (adjusted OR 0.36, P < 0.001 and adjusted OR 0.54, P < 0.001, respectively). Conclusions A high PM2.5 level was associated with an increased risk of acute lung edema. High ambient temperature in hot seasons and low ambient temperature in cold seasons were also associated with increased risk. It is essential to educate these patients to avoid areas with severe air pollution and extreme ambient temperature.


2021 ◽  
Author(s):  
Udaya Ketipearachchi

Abstract Transmission of SARS-CoV-2 is not well understood and different models are needed (i.e. one model cannot answer it all) to understand and fight this disease. Mathematical modelling is a powerful tool for understanding transmission of SARS-CoV-2 and evaluating possible events or scenarios. Here, we present two models based on indirect transmission of SARSCoV-2 that explain the influence of ambient temperature and air pollution on outdoor and indoor behavior of SARS-CoV-2. These models discuss the temperature dependency of the lethality of SARS-CoV-2 and its spread during indoor and outdoor exposure. Furthermore, the temperature effect on the half-life of SARS-CoV-2 is discussed if the SARS-CoV-2 is transmitted via particulate matter or surfaces. It is also important to understand the role of dew point instead of the humidity factor alone as the combined effect of temperature and humidity might play a major role in the transmission of SARS-CoV-2 .


2021 ◽  
Author(s):  
Udaya Ketipearachchi

Abstract Transmission of SARS-CoV-2 is not well understood and different models are needed (i.e. one model cannot answer it all) to understand and fight this disease. Mathematical modelling is a powerful tool for understanding transmission of SARS-CoV-2 and evaluating possible events or scenarios. Here, we present two models based on indirect transmission of SARSCoV-2 that explain the influence of ambient temperature and air pollution on outdoor and indoor behavior of SARS-CoV-2. These models discuss the temperature dependency of the lethality of SARS-CoV-2 and its spread during indoor and outdoor exposure. Furthermore, the temperature effect on the half-life of SARS-CoV-2 is discussed if the SARS-CoV-2 is transmitted via particulate matter or surfaces. It is also important to understand the role of dew point instead of the humidity factor alone as the combined effect of temperature and humidity might play a major role in the transmission of SARS-CoV-2 .


2021 ◽  
Author(s):  
Udaya Ketipearachchi

Abstract Transmission of SARS-CoV-2 is not well understood and different models are needed (i.e. one model cannot answer it all) to understand and fight this disease. Mathematical modelling is a powerful tool for understanding transmission of SARS-CoV-2 and evaluating possible events or scenarios. Here, we present two models based on indirect transmission of SARSCoV-2 that explain the influence of ambient temperature and air pollution on outdoor and indoor behavior of SARS-CoV-2. These models discuss the temperature dependency of the lethality of SARS-CoV-2 and its spread during indoor and outdoor exposure. Furthermore, the temperature effect on the half-life of SARS-CoV-2 is discussed if the SARS-CoV-2 is transmitted via particulate matter or surfaces. It is also important to understand the role of dew point instead of the humidity factor alone as the combined effect of temperature and humidity might play a major role in the transmission of SARS-CoV-2 .


Időjárás ◽  
2021 ◽  
Vol 125 (4) ◽  
pp. 625-646
Author(s):  
Zita Ferenczi ◽  
Emese Homolya ◽  
Krisztina Lázár ◽  
Anita Tóth

An operational air quality forecasting model system has been developed and provides daily forecasts of ozone, nitrogen oxides, and particulate matter for the area of Hungary and three big cites of the country (Budapest, Miskolc, and Pécs). The core of the model system is the CHIMERE off-line chemical transport model. The AROME numerical weather prediction model provides the gridded meteorological inputs for the chemical model calculations. The horizontal resolution of the AROME meteorological fields is consistent with the CHIMERE horizontal resolution. The individual forecasted concentrations for the following 2 days are displayed on a public website of the Hungarian Meteorological Service. It is essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input meteorological fields. The main aim of this research is to probe the response of an air quality model to its uncertain meteorological inputs. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. During the past decades, meteorological ensemble modeling has received extensive research and operational interest because of its ability to better characterize forecast uncertainty. One such ensemble forecast system is the one of the AROME model, which has an 11-member ensemble where each member is perturbed by initial and lateral boundary conditions. In this work we focus on wintertime particulate matter concentrations, since this pollutant is extremely sensitive to near-surface mixing processes. Selecting a number of extreme air pollution situations we will show what the impact of the meteorological uncertainty is on the simulated concentration fields using AROME ensemble members.


Circulation ◽  
2020 ◽  
Vol 142 (9) ◽  
pp. 858-867 ◽  
Author(s):  
Adjani A. Peralta ◽  
Mark S. Link ◽  
Joel Schwartz ◽  
Heike Luttmann-Gibson ◽  
Douglas W. Dockery ◽  
...  

Background: Individuals are exposed to air pollution and ionizing radiation from natural sources through inhalation of particles. This study investigates the association between cardiac arrhythmias and short-term exposures to fine particulate matter (particulate matter ≤2.5 µm aerodynamic diameter; PM 2.5 ) and particle radioactivity. Methods: Ventricular arrhythmic events were identified among 176 patients with dual-chamber implanted cardioverter-defibrillators in Boston, Massachusetts between September 2006 and June 2010. Patients were assigned exposures based on residential addresses. Daily PM 2.5 levels were estimated at 1-km×1-km grid cells from a previously validated prediction model. Particle gross β activity was used as a surrogate for particle radioactivity and was measured from several monitoring sites by the US Environmental Protection Agency’s monitoring network. The association of the onset of ventricular arrhythmias (VA) with 0- to 21-day moving averages of PM 2.5 and particle radioactivity (2 single-pollutant models and a 2-pollutant model) before the event was examined using time-stratified case-crossover analyses, adjusted for dew point and air temperatures. Results: A total of 1,050 VA were recorded among 91 patients, including 123 sustained VA among 25 of these patients. In the single-pollutant model of PM 2.5 , each interquartile range increase in daily PM 2.5 levels for a 21-day moving average was associated with 39% higher odds of a VA event (95% CI, 12%–72%). In the single-pollutant model of particle radioactivity, each interquartile range increase in particle radioactivity for a 2-day moving average was associated with 13% higher odds of a VA event (95% CI, 1%–26%). In the 2-pollutant model, for the same averaging window of 21 days, each interquartile range increase in daily PM 2.5 was associated with an 48% higher odds of a VA event (95% CI, 15%–90%), and each interquartile range increase of particle radioactivity with a 10% lower odds of a VA event (95% CI, –29% to 14%). We found that with higher levels of particle radioactivity, the effect of PM 2.5 on VAs is reduced. Conclusions: In this high-risk population, intermediate (21-day) PM 2.5 exposure was associated with higher odds of a VA event onset among patients with known cardiac disease and indication for implanted cardioverter-defibrillator implantation independently of particle radioactivity.


2020 ◽  
Vol 56 (1) ◽  
pp. 2000147 ◽  
Author(s):  
Ulrike Gehring ◽  
Alet H. Wijga ◽  
Gerard H. Koppelman ◽  
Judith M. Vonk ◽  
Henriette A. Smit ◽  
...  

BackgroundAir pollution is associated with asthma development in children and adults, but the impact on asthma development during the transition from adolescence to adulthood is unclear. Adult studies lack historical exposures and consequently cannot assess the relevance of exposure during different periods of life. We assessed the relevance of early-life and more recent air pollution exposure for asthma development from birth until early adulthood.MethodsWe used data of 3687 participants of the prospective Dutch PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort and linked asthma incidence until age 20 years to estimated concentrations of nitrogen dioxide (NO2), particulate matter with a diameter <2.5 μm (PM2.5), <10 μm (PM10), and 2.5–10 μm, and PM2.5 absorbance (“soot”) at the residential address. We assessed overall and age-specific associations with air pollution exposure with discrete time-hazard models, adjusting for potential confounders.ResultsOverall, we found higher incidence of asthma until the age of 20 years with higher exposure to all pollutants at the birth address (adjusted odds ratio (95% CI) ranging from 1.09 (1.01–1.18) for PM10 to 1.20 (1.10–1.32) for NO2) per interquartile range increase) that were rather persistent with age. Similar associations were observed with more recent exposure defined as exposure at the current home address. In two-pollutant models with particulate matter, associations with NO2 persisted.ConclusionsExposure to air pollution, especially from motorised traffic, early in life may have long-term consequences for asthma development, as it is associated with an increased risk of developing asthma through childhood and adolescence into early adulthood.


Sign in / Sign up

Export Citation Format

Share Document