scholarly journals U19-Net: A Deep Learning Approach for Obstacle Detection in Self-Driving Cars

Author(s):  
Albert Aarón Cervera-Uribe ◽  
Paul Erick Mendez-Monroy

Abstract Development of self-driving cars aims to drive safely from one point to another in a coordinated system where the on-board autonomous vehicle system should react and possibly alert drivers about the driving environments and possible collisions that may arise between drivers and obstacles. In order to achieve a high level of autonomy in urban scenarios with unpredictable traffic, these systems must have robust and reliable obstacles detection systems. This work proposes U19-Net, a deep learning model that explores improvement of the so-called encoder-decoder neural networks with a very deep network architecture. In particular, U19-Net is applied and successfully evaluated for the vehicle and pedestrian detection tasks within an open source dataset consisting of frames from a video in real driving scenarios. The output of the network consists of a pixel-level mask that identifies each pixel as vehicle or pedestrian, demonstrating that the depth representation attained with U19-Net is beneficial in this kind of architecture for vision systems in self-driving cars.

Author(s):  
Yogita Hande ◽  
Akkalashmi Muddana

Presently, the advances of the internet towards a wide-spread growth and the static nature of traditional networks has limited capacity to cope with organizational business needs. The new network architecture software defined networking (SDN) appeared to address these challenges and provides distinctive features. However, these programmable and centralized approaches of SDN face new security challenges which demand innovative security mechanisms like intrusion detection systems (IDS's). The IDS of SDN are designed currently with a machine learning approach; however, a deep learning approach is also being explored to achieve better efficiency and accuracy. In this article, an overview of the SDN with its security concern and IDS as a security solution is explained. A survey of existing security solutions designed to secure the SDN, and a comparative study of various IDS approaches based on a deep learning model and machine learning methods are discussed in the article. Finally, we describe future directions for SDN security.


2021 ◽  
Vol 336 ◽  
pp. 07004
Author(s):  
Ruoyu Fang ◽  
Cheng Cai

Obstacle detection and target tracking are two major issues for intelligent autonomous vehicles. This paper proposes a new scheme to achieve target tracking and real-time obstacle detection of obstacles based on computer vision. ResNet-18 deep learning neural network is utilized for obstacle detection and Yolo-v3 deep learning neural network is employed for real-time target tracking. These two trained models can be deployed on an autonomous vehicle equipped with an NVIDIA Jetson Nano motherboard. The autonomous vehicle moves to avoid obstacles and follow tracked targets by camera. Adjusting the steering and movement of the autonomous vehicle according to the PID algorithm during the movement, therefore, will help the proposed vehicle achieve stable and precise tracking.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4719
Author(s):  
Malik Haris ◽  
Jin Hou

Nowadays, autonomous vehicle is an active research area, especially after the emergence of machine vision tasks with deep learning. In such a visual navigation system for autonomous vehicle, the controller captures images and predicts information so that the autonomous vehicle can safely navigate. In this paper, we first introduced small and medium-sized obstacles that were intentionally or unintentionally left on the road, which can pose hazards for both autonomous and human driving situations. Then, we discuss Markov random field (MRF) model by fusing three potentials (gradient potential, curvature prior potential, and depth variance potential) to segment the obstacles and non-obstacles into the hazardous environment. Since the segment of obstacles is done by MRF model, we can predict the information to safely navigate the autonomous vehicle form hazardous environment on the roadway by DNN model. We found that our proposed method can segment the obstacles accuracy from the blended background road and improve the navigation skills of the autonomous vehicle.


Author(s):  
Yogita Hande ◽  
Akkalashmi Muddana

Presently, the advances of the internet towards a wide-spread growth and the static nature of traditional networks has limited capacity to cope with organizational business needs. The new network architecture software defined networking (SDN) appeared to address these challenges and provides distinctive features. However, these programmable and centralized approaches of SDN face new security challenges which demand innovative security mechanisms like intrusion detection systems (IDS's). The IDS of SDN are designed currently with a machine learning approach; however, a deep learning approach is also being explored to achieve better efficiency and accuracy. In this article, an overview of the SDN with its security concern and IDS as a security solution is explained. A survey of existing security solutions designed to secure the SDN, and a comparative study of various IDS approaches based on a deep learning model and machine learning methods are discussed in the article. Finally, we describe future directions for SDN security.


Author(s):  
Emerson Klippel ◽  
Ricardo Oliveira ◽  
Dmitry Maslov ◽  
Andrea Bianchi ◽  
Saul Emanuel Silva ◽  
...  

The use of deep learning on edge AI to detect failures in conveyor belts solves a complex problem of iron ore beneficiation plants. Losses in the order of thousands of dollars are caused by failures in these assets. The existing fault detection systems currently do not have the necessary efficiency and complete loss of belts is common. Correct fault detection is necessary to reduce financial losses and unnecessary risk exposure by maintenance personnel. This problem is addressed by the present work with the training of a deep learning model for detecting images of failures of the conveyor belt. The resulting model is converted and executed in an edge device located near the conveyor belt to stop it in case a failure is detected. The results obtained in the development and tests carried out to date show the feasibility of using Edge AI to solve complex problems in a mining environment such as detecting longitudinal rips and stimulate the continuity of the work considering new scenarios and operational conditions in the search for a robust and replicable solution.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8072
Author(s):  
Yu-Bang Chang ◽  
Chieh Tsai ◽  
Chang-Hong Lin ◽  
Poki Chen

As the techniques of autonomous driving become increasingly valued and universal, real-time semantic segmentation has become very popular and challenging in the field of deep learning and computer vision in recent years. However, in order to apply the deep learning model to edge devices accompanying sensors on vehicles, we need to design a structure that has the best trade-off between accuracy and inference time. In previous works, several methods sacrificed accuracy to obtain a faster inference time, while others aimed to find the best accuracy under the condition of real time. Nevertheless, the accuracies of previous real-time semantic segmentation methods still have a large gap compared to general semantic segmentation methods. As a result, we propose a network architecture based on a dual encoder and a self-attention mechanism. Compared with preceding works, we achieved a 78.6% mIoU with a speed of 39.4 FPS with a 1024 × 2048 resolution on a Cityscapes test submission.


Author(s):  
Kichang Kwak ◽  
Marc Niethammer ◽  
Kelly S. Giovanello ◽  
Martin Styner ◽  
Eran Dayan ◽  
...  

AbstractMild cognitive impairment (MCI) is often considered the precursor of Alzheimer’s disease. However, MCI is associated with substantially variable progression rates, which are not well understood. Attempts to identify the mechanisms that underlie MCI progression have often focused on the hippocampus, but have mostly overlooked its intricate structure and subdivisions. Here, we utilized deep learning to delineate the contribution of hippocampal subfields to MCI progression using a total sample of 1157 subjects (349 in the training set, 427 in a validation set and 381 in the testing set). We propose a dense convolutional neural network architecture that differentiates stable and progressive MCI based on hippocampal morphometry. The proposed deep learning model predicted MCI progression with an accuracy of 75.85%. A novel implementation of occlusion analysis revealed marked differences in the contribution of hippocampal subfields to the performance of the model, with presubiculum, CA1, subiculum, and molecular layer showing the most central role. Moreover, the analysis reveals that 10.5% of the volume of the hippocampus was redundant in the differentiation between stable and progressive MCI. Our predictive model uncovers pronounced differences in the contribution of hippocampal subfields to the progression of MCI. The results may reflect the sparing of hippocampal structure in individuals with a slower progression of neurodegeneration.


2018 ◽  
Vol 29 (3) ◽  
pp. 67-88 ◽  
Author(s):  
Wen Zeng ◽  
Hongjiao Xu ◽  
Hui Li ◽  
Xiang Li

In the big data era, it is a great challenge to identify high-level abstract features out of a flood of sci-tech literature to achieve in-depth analysis of data. The deep learning technology has developed rapidly and achieved applications in many fields, but has rarely been utilized in the research of sci-tech literature data. This article introduced the presentation method of vector space of terminologies in sci-tech literature based on the deep learning model. It explored and adopted a deep AE model to reduce the dimensionality of input word vector feature. Also put forward is the methodology of correlation analysis of sci-tech literature based on deep learning technology. The experimental results showed that the processing of sci-tech literature data could be simplified into the computation of vectors in the multi-dimensional vector space, and the similarity in vector space could be used to represent similarity in text semantics. The correlation analysis of subject contents between sci-tech literatures of the same or different types can be made using this method.


Author(s):  
Kalirajan K. ◽  
Seethalakshmi V. ◽  
Venugopal D. ◽  
Balaji K.

Moving object detection and tracking is the process of identifying and locating the class objects such as people, vehicle, toy, and human faces in the video sequences more precisely without background disturbances. It is the first and foremost step in any kind of video analytics applications, and it is greatly influencing the high-level abstractions such as classification and tracking. Traditional methods are easily affected by the background disturbances and achieve poor results. With the advent of deep learning, it is possible to improve the results with high level features. The deep learning model helps to get more useful insights about the events in the real world. This chapter introduces the deep convolutional neural network and reviews the deep learning models used for moving object detection. This chapter also discusses the parameters involved and metrics used to assess the performance of moving object detection in deep learning model. Finally, the chapter is concluded with possible recommendations for the benefit of research community.


Sign in / Sign up

Export Citation Format

Share Document