scholarly journals Space Oddity: Musical Syntax is Mapped onto Visual Space

Author(s):  
Neta Batya Maimon ◽  
Dominique Lamy ◽  
Zohar Eitan

Abstract Musicians ubiquitously apply spatial metaphors when describing the stability hierarchy established by tonal syntax: stable tones are considered spatially central and, as gravitational foci, spatially lower. We investigated whether listeners, musicians and non-musicians, indeed associate tonal relationships with visuospatial dimensions, including spatial height, centrality, laterality, and size, and whether such mappings are consistent with tonal discourse. We examined explicit and implicit associations. In the explicit paradigm, participants heard a tonality-establishing prime followed by a probe tone and coupled each probe with a subjectively appropriate location on a two-dimensional grid (Exp. 1) or with one of 7 circles differing in size (Exp. 4). The implicit paradigm used a version of the Implicit Association Test to examine associations of tonal stability with vertical position (Exp. 2), lateral position (Exp. 3) and object size (Exp. 5). Tonal stability was indeed as- sociated with perceived physical space: the spatial distances between the locations associated with different scale-degrees significantly correlated with the tonal stability differences between these scale degrees. However, inconsistently with the hypotheses implied by musical discourse, stable tones were associated with leftward and higher spatial positions, relative to unstable tones, rather than with central and lower spatial positions. We speculate that these mappings are influenced by emotion, embodying the “good is up” metaphor, and by the spatial structure of music keyboards. Taken together, results suggest that abstract syntactical relationships may consistently map onto concrete perceptual dimensions across modalities, demonstrating a new type of cross-modal cor- respondence and a hitherto under-researched connotative function of musical structure.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Neta B. Maimon ◽  
Dominique Lamy ◽  
Zohar Eitan

AbstractIncreasing evidence has uncovered associations between the cognition of abstract schemas and spatial perception. Here we examine such associations for Western musical syntax, tonality. Spatial metaphors are ubiquitous when describing tonality: stable, closural tones are considered to be spatially central and, as gravitational foci, spatially lower. We investigated whether listeners, musicians and nonmusicians, indeed associate tonal relationships with visuospatial dimensions, including spatial height, centrality, laterality, and size, implicitly or explicitly, and whether such mappings are consistent with established metaphors. In the explicit paradigm, participants heard a tonality-establishing prime followed by a probe tone and coupled each probe with a subjectively appropriate location (Exp.1) or size (Exp.4). The implicit paradigm used a version of the Implicit Association Test to examine associations of tonal stability with vertical position (Exp.2), lateral position (Exp3) and size (Exp.5). Tonal stability was indeed associated with perceived physical space: the spatial distances between the locations associated with different scale-degrees significantly correlated with the tonal stability differences between these scale-degrees. However, inconsistently with musical discourse, stable tones were associated with leftward (instead of central) and higher (instead of lower) spatial positions. We speculate that these mappings are influenced by emotion, embodying the “good is up” metaphor, and by the spatial structure of music keyboards. Taken together, the results demonstrate a new type of cross-modal correspondence and a hitherto under-researched connotative function of musical structure. Importantly, the results suggest that the spatial mappings of an abstract domain may be independent of the spatial metaphors used to describe that domain.


2021 ◽  
Author(s):  
Tianying Wang ◽  
Yanjun Zhou ◽  
Honglin Tang ◽  
Shihua Zhang ◽  
Haiqing Tian

Abstract The JCSM concept (short for Jackup Combined Semisubmersible Multifunction Platform) is a new type of semisubmersible platform presented by the first author, which overcomes the shortcomings of the available semisubmersible platforms, and combines the advantages of the traditional semisubmersible platform, the Jackup platform and the new FPSO concept - IQFP. Due to the complicated interaction between stability and hydrodynamic performance, it is necessary to explore the effect of geometrical parameters of the main body on the stability and hydrodynamic performance in order to obtain the optimal design plan of a JCSM platform. Firstly, the structure components and innovations of the JCSM were briefly reviewed in order to facilitate readers to understand its full picture. Then, six independent geometric parameters were selected by carefully studying the shape characteristics of the initial design plan of a JCSM study case. Furthermore, the stability heights and motion responses of various floating bodies of the JCSM case with different geometric parameters in wave were calculated using boundary element method based on potential flow theory. Lastly, effect of the shape parameters on stability and hydrodynamic performance of the JCSM was qualitatively evaluated. The research would shed lights on the shape design of the JCSM main body.


2015 ◽  
Vol 22 (10) ◽  
pp. 994-1001 ◽  
Author(s):  
Christina C. Emeh ◽  
Amori Yee Mikami ◽  
Bethany A. Teachman

Objective: Children with ADHD overestimate their own social and behavioral competence when using explicit self-report measures, a phenomenon known as Positive Illusory Bias (PIB). This study examined whether children with ADHD show PIB when self-perceptions are measured implicitly, reflecting associations that are relatively difficult to consciously control. Method: Participants were 23 children (ages 6.8-9.8) with ADHD and 55 typically developing (TD) children. Children’s explicit self-perceptions of competence were measured via self-report on the Self-Perception Profile for Children; their implicit associations were assessed using an Implicit Association Test. Parent and teacher ratings formed an adult-reported composite indicator of children’s competence, to which children’s self-perceptions were compared. Results: Children with ADHD overestimated their competence as compared with adult-informant reports on both explicit and implicit measures, whereas TD children tended to be accurate. Conclusion: Inflated self-perceptions in children with ADHD may exist on an implicit level outside of conscious awareness.


Separations ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 53 ◽  
Author(s):  
Carlos Luna ◽  
Diego Luna ◽  
Felipa Bautista ◽  
Juan Calero ◽  
Antonio Romero ◽  
...  

In this study, the evaluation of the catalytic behavior of several wild bacterial strains in the 1,3-selective ethanolysis of triglycerides with ethanol to produce a new type of biodiesel (Ecodiesel) that integrates glycerol as monoacylglycerols was carried out. The Ecodiesel production not only avoids the elimination of glycerol, which is largely generated as a by-product in the biodiesel industry, but also results in an increase in the biofuel yield. The wild microbial strain samples were obtained from several lipophilic organisms. In addition to evaluate the enzymatic extracts, the minimum grade of purification of the strains, necessary to obtain similar results to those attained with commercial lipases was studied. This purification treatment included a dialysis followed by a lyophilization process. Such extracts were directly used as biocatalysts in the transesterification reaction of sunflower oil with ethanol, attaining much better results (yield close to 100%) than those obtained with strains which were not submitted to the purification process (yields lower than 10%). Furthermore, the results here obtained are similar to those obtained with commercial lipases but were achieved under mild conditions and lower reaction time (2 h). In addition, the stability of the enzymatic extracts was corroborated by subsequent reactions, showing no loss of activity. Thus, this study brings to light that enzymatic extracts obtained by a very simple purification process can be economically competitive with the conventional biodiesel production methods.


2012 ◽  
Vol 482-484 ◽  
pp. 1384-1389 ◽  
Author(s):  
Ling Gang Meng ◽  
Can Feng Fang ◽  
Peng Peng ◽  
Nai Pu Li ◽  
Qiong Zhu ◽  
...  

Microstructure evolution of Mg-5Gd-2Y-2Zn-0.5Zr alloy during high temperature heat-treatment at 500°C in the time range 10-70h was investigated. The results show that after adding the element Y, the as-cast Mg-5Gd-2Y-2Zn-0.5Zr alloy forms the Mg12Zn(Y,Gd) phase with 18R-LPSO structure at the grain boundary. During heat-treatment at 500°C, the stability of 18R-LPSO structure is weakened by Gd atoms, parts of LPSO phases dissolve gradually into the matrix with time prolonged and a new type Mg(Y,Gd)Zn phase come into being. LPSO phase in the grain boundary can ensure the ultimate tensile strength and elongation of the alloy, and effect of dissevering on the LPSO phase by Mg(Gd,Y)Zn phase results the decrease of UTS and elongation.


2021 ◽  
pp. 1-27
Author(s):  
Yichen Bao ◽  
Kai Liu ◽  
Quan Zheng ◽  
Lulu Yao ◽  
Yufu Xu

Abstract Pickering emulsion is a new type of stable emulsion made by ultra-fine solid particles instead of traditional surfactants as stabilizers, which has received widespread attention in recent years. The preparation methods of stator-rotor homogenization, high-pressure homogenization, and ultrasonic emulsification were compared with others in this work. The main factors affecting the stability of Pickering emulsion are the surface humidity of the solid particles, the polarity of the oil phase, and the oil-water ratio. These factors could affect the nature of the solid particles, the preparation process of Pickering emulsion and the external environment. Consequently, the long-term stability of Pickering emulsion is still a challenge. The tribological investigations of Pickering emulsion were summarized, and the multifunctional Pickering emulsion shows superior prospects for tribological applications. Moreover, the latest development of Pickering emulsion offers a new strategy for smart lubrication in the near future.


Author(s):  
Ping Huo ◽  
Yangyang Xu ◽  
Jiangtao Yu ◽  
Yazhou Wang

This paper designs and develops a new type of frame-foot wall-climbing robot structure. According to the bionic principle, a new parallel telescopic leg structure is proposed, and the 3D design of the overall structure of the wall-climbing robot is completed. Secondly, the kinematics analysis of the robot is carried out, and the forward and inverse solution models of the leg structure position are completed to verify the feasibility of the leg structure stability. Based on the polynomial motion equations, the robot motion planning and gait design are established, and the speed and acceleration change graphs of the leg structure slider are obtained, which avoids the rigid impact between the parts, and realizes the alternate adsorption and continuous movement of the robot legs, which the rationality of the legs structure design and the stability of the movement are verified. Through simulation and experimental results, it is shown that during the robot’s movement, the leg structure can adjust the step distance and step height according to obstacles, so as to achieve the expected obstacle crossing goal. The leg structure is adjusted according to the working environment to ensure that the fuselage and the working surface are always kept parallel to improve the stability of the overall structure.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 481 ◽  
Author(s):  
Zhonghui Li ◽  
Tongshui Xia ◽  
Cuimei Jiang

By designing a state observer, a new type of synchronization named complex modified projective synchronization is investigated in a class of nonlinear fractional-order complex chaotic systems. Combining stability results of the fractional-order systems and the pole placement method, this paper proves the stability of fractional-order error systems and realizes complex modified projective synchronization. This method is so effective that it can be applied in engineering. Additionally, the proposed synchronization strategy is suitable for all fractional-order chaotic systems, including fractional-order hyper-chaotic systems. Finally, two numerical examples are studied to show the correctness of this new synchronization strategy.


Sign in / Sign up

Export Citation Format

Share Document