Oxaliplatin Compromised CDK1 Activity Sensitizes BRCA-Proficient Cancers to PARP Inhibition in Oxaliplatin Resistance Gastric Cancer

Author(s):  
Huafu Li ◽  
Chunming Wang ◽  
Linxiang Lan ◽  
Wenhui Wu ◽  
Ian Evans ◽  
...  

Abstract Background: Oxaliplatin resistance is one of the most important problems in the treatment of cancer. The successful culture of tumor organoid in gastric cancer can help us to study oxaliplatin resistance and its mechanism. Thus, it is convenient for us to successfully solve oxaliplatin resistance and improve the prognosis of patients.Methods: Two oxaliplatin resistant patients and two oxaliplatin sensitive patients were enrolled through our Gastric Cancer Center of Sun Yat-sen University. Core genes of oxaliplatin resistant and non-resistant patients were analyzed by sequencing. The overexpression and knockdown of core genes were carried out by organoid in vivo, combined with oxaliplatin-resistant cell lines AGS, MKN74 and SNU719 for cell viability, WB and immunofluorescence, etc., to verify the role of core genes in oxaliplatin resistance. Again, in vivo experiments were verified by subcutaneous tumor formation in vitro.Results: Through sequencing, we found that PARP1 is an important core gene leading to oxaliplatin resistance. In vivo organoids, oxaliplatin resistant cell lines and subcutaneous tumor formation in vivo. We found that PARP1 was an important cause of oxaliplatin resistance. Oxaliplatin can inhibit CDK1 activity and make cancer with normal BRCA1 function sensitive to PARP inhibition. Through the combination of oxaliplatin and PARP1 inhibitor olaparib, we can effectively kill tumor cells. Through the patients' follow-up data, we found that the expression level of PARP1 was significantly correlated with oxaliplatin resistance.Conclusion: Our results indicate that PARP1 is an important core gene leading to oxaliplatin resistance. Combined oxaliplatin and PARP1 inhibitor olaparib can effectively kill tumor cells. Oxaliplatin can inhibit CDK1 activity and make cancers with normal BRCA1 function more sensitive to PARP inhibitors.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 16-17
Author(s):  
Shunichiro Yasuda ◽  
Satoru Aoyama ◽  
Ryoto Yoshimoto ◽  
Daisuke Watanabe ◽  
Hiroki Akiyama ◽  
...  

【Introduction】 Although Ruxolitinib (RUX), a JAK1/2-inhibitor, is an effective treatment option for primary myelofibrosis, tumor cells become resistant to this drug in many MPN patients, causing poor prognosis of MPN patients. Until now, various studies have elucidated the mechanisms of RUX-resistance in JAK2V617F-mutant MPN cells, including 1) increased JAK2 heterodimerization leading to sustained JAK2 activation, 2) JAK2 kinase domain mutations, and 3) JAK1/JAK3 activations. However, mechanisms of RUX-resistance in MPN cells with CALR mutations have not been fully characterized to date. In this study, we have clarified a mechanism of RUX-resistance in MPN tumor cells with CALR mutations. 【Materials and Methods】 At first, we have created several human cell lines with exogenous MPL expressions (exMPL) and CALR +1 frameshift mutations (CALR-fs) by introductions of V5-tagged MPL and/or FLAG-tagged CALR Del52/Ins5 expressing vectors or the CRISPR/Cas9 technology. We have confirmed that these cell lines had increased JAK/STAT signaling and respond to RUX-treatment. To establish RUX-resistant cell lines, we have cultured these cell lines with low-dose RUX (0.2μM), and gradually increased the concentrations of RUX by 0.1μM every week. We have successfully established RUX-resistant cells that proliferated in the presence of RUX at 0.8μM. Then, we characterized the RUX-resistant cells with CALR-fs/exMPL. To examine whether RUX-resistant cells shows the resistant-phenotype in vivo, we have subcutaneously implanted RUX-resistant cells as well as RUX-sensitive cells into immunocompromised mice. Three weeks after injections of the tumor cells, the mice were euthanized, and the subcutaneous tumors pathologically examined. MPL knockdown experiments showed that high levels of MPL were indispensable in the resistant cell lines. Co-immunoprecipitation assaies showed the interactions of mutant CALR and MPL proteins in RUX-resistant cells. To examine reversibility of RUX-resistance, RUX-resistant cells were cultured without RUX for three months. Finally, we examined pathological features of bone marrow samples of MPN patients with CALR mutations by immunohistochemical staining. 【Results】We have found that RUX-resistant cells had high MPL transcripts, overexpression of both immature and mature MPL, and JAK2. We also found that RUX-resistant cells had increased phosphorylations of JAK1, JAK2, JAK3 STAT5, MEK and ERK. In vivo assay using immunocompromised mice showed the immunohistochemical staining of MPL in the tumors from RUX-resistant cells showed high expression of MPL in the tumor cells. We also found that mature MPL proteins were more stable since proteasome-dependent degradation of mature MPL proteins was impaired in RUX-resistant cells. Knockdown of MPL of RUX-resistant cells by shRNAs decreased intensity of phosphorylations of JAK1, JAK2, STAT5, MEK and ERK, suggesting that the high expression of MPL leads to more potent signaling. Notably, when mutant-CALR proteins were immunoprecipitated, both immature and mature MPL proteins were co-immunoprecipitated: more MPL proteins were pulled down in RUX-resistant cells. In a reciprocal experiment, when MPL proteins were immunoprecipitated, mutant-CALR proteins were co-immunoprecipitated: more mutant-CALR proteins were pulled down in RUX-resistant cells. Reduction of mutated CALR decreased proliferation of the resistant cells, suggesting that a high level of mutant-CALR/MPL complex contributed to RUX-resistance in these cells. When the resistant cells were cultured in the absence of RUX, RUX-resistance was reversed with reduction of MPL transcripts, mature MPL and JAK2 proteins and mutant-CALR/MPL complex. Immunohistochemical staining showed that MPL staining intensity of megakaryocytes of MF patients with CALR mutations were higher than those of patients with JAK2V617F or normal individuals. MPL expressions were higher after RUX-treatment in MF patients with both JAK2V617F mutations and CALR mutations. 【Discussion】 Overexpression of MPL is a common mechanism after RUX-treatment in MPN cells with both JAK1V617F mutations and CALR mutations. In RUX-resistant cells with CALR mutations, MPL overexpression leads to the high level of mutant-CALR/MPL complex, causing resistance to RUX. This novel mechanism could be a new therapeutic target to overcome RUX-resistance in MPN cells with CALR mutations. Disclosures Komatsu: Otsuka Pharmaceutical Co., Ltd., Shire Japan KK, Novartis Pharma KK, PharmaEssentia Japan KK, Fuso Pharmaceutical Industries, Ltd., Fujifilm Wako Pure Chemical Corporation, Chugai Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Takeda Pharmaceutica: Research Funding; Otsuka Pharmaceutical Co., Ltd., PharmaEssentia Japan KK, AbbVie GK, Celgene KK, Novartis Pharma KK, Shire Japan KK, Japan Tobacco Inc: Consultancy; Takeda Pharmaceutical Co., Ltd, Novartis Pharma KK, Shire Japan KK: Speakers Bureau; AbbVie: Other: member of safety assessment committee in M13-834 clinical trial.; PPMX: Consultancy, Research Funding; Meiji Seika Pharma Co., Ltd.: Patents & Royalties: PCT/JP2020/008434, Research Funding.


2002 ◽  
Vol 5 (3) ◽  
pp. 276-282 ◽  
Author(s):  
Ivo Leuschner ◽  
Thomas Heuer ◽  
Dieter Harms

In rhabdomyosarcoma (RMS) of childhood and adolescence very little is known about interactions of cytotoxic drugs and tumor cells. In recurrent RMS the tumor cells are often more mature than in the primary tumor. The biological properties of these cells are still a subject of controversy. We investigated two human (RD2 and TE 671) cell lines by cultivating them with doxorubicin, cisplatinum, and etoposide. Degree of differentiation and proliferation rate were estimated morphologically and by means of immunohistochemistry and a mono-layer proliferation assay. Both morphological and immunohistochemical maturation was measurable in most resistant cell lines. An increase in myosin expression was most marked in the etoposide- and doxorubicin-resistant RD cell lines. The proliferation rate was decreased in almost all resistant cell lines. Nevertheless, the resistant cell lines tolerated high-dose levels of cytotoxic drugs at a higher proliferation rate than parental cell lines cultivated under similar conditions. The maturation seen in some recurrent tumors of RMS can be simulated in vitro by cultivating cell lines with cytotoxic drugs at sublethal doses. Interestingly, the resistance-associated induced maturation was not accompanied by p170 expression. After comparing these in vitro results with the maturation seen in RMS specimens after chemotherapy, we conclude that chemotherapy-induced differentiation in vivo might be a morphological sign of chemoresistance.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 727-727 ◽  
Author(s):  
Marc A Weniger ◽  
Edgar Gil Rizzatti ◽  
Patricia Perez Galan ◽  
Delong Liu ◽  
Peter J Munson ◽  
...  

Abstract Abstract 727 The proteasome inhibitor bortezomib (BZM) is effective as single-agent in relapsed and refractory mantle cell lymphoma (MCL) but more than half of patients remain insensitive to BZM. Suggested mechanisms of action include activation of Noxa, p53, oxidative, and endoplasmic reticulum (ER) stress. To define mechanisms relevant for BZM-induced cytotoxicity we pursued two approaches: first, we characterized gene expression changes in 10 MCL cell lines exposed for 24h to 10nM BZM, a concentration that kills >50% of sensitive, but <20% of resistant cells. Secondly, we analyzed gene expression changes in tumor cells of patients with leukemic MCL undergoing BZM treatment in a clinical trial. RNA was extracted from MCL cell lines at early (1h and 3h), intermediate (6h) and late (24h) time points. Virtually no changes in gene expression were detectable at 1 and 3h of drug exposure and only about 100 genes changed by 6h. After 24h of treatment 524 genes were significantly changed in sensitive and 271 genes in resistant cell lines respectively. The delayed onset of gene expression changes is consistent with the reversibility of BZM toxicity for up to 8 hours. Using Ingenuity pathway analysis (IPA) and gene set enrichment analysis (GSEA) we identified two dominant responses induced by BZM: 1) an oxidative stress response mediated by NRF2 and related transcription factors, and 2) an ER stress/ubiquitin proteasome response (FDR by GSEA <0.1). Both responses were primarily apparent in sensitive cell lines. A set of 20 experimentally validated NRF2 target genes was used as a core NRF2 signature: this signature was increased 15-fold on average in sensitive cell lines but only 2-fold in resistant cell lines (P=0.006). Similarly, an XBP1 and ATF6 signature, reflecting activation of the ER stress response, was stronger induced in sensitive than in resistant cell lines (average 1.9-fold vs 1.3-fold; P=0.003). Activation of these stress pathways upon BZM treatment was confirmed by demonstrating accumulation of nuclear NRF2 in sensitive Jeko1 but not in resistant Mino cells. Also markers of ER stress such as phosphorylation of ER resident nuclease Ire1 that splices the transcription factor XBP1 and activation of ATF3, ATF4, and CHOP downstream of PERK were readily detected in Jeko1 but not in Mino cells. Finally, Noxa, the BH3-only protein primarily responsible for BZM-induced apoptosis, was only induced in sensitive Jeko1 cells. We next analyzed the effect of BZM on purified tumor cells from five patients with leukemic MCL treated with BZM (1.5mg/m2, day 1, 4, 8 and 11). Two patients showed a >50% reduction in circulating tumor cells after 2 injections of drug (day 8) and >75% reduction after 4 injections (day 2, sensitive), while in three patients there was no change or an intermediate response (resistant). Western blotting demonstrated Noxa up-regulation in circulating tumor cells of sensitive but not resistant samples. This is consistent with the demonstrated importance of Noxa for induction of apoptosis in response to BZM in cell line studies. Next we performed gene expression profiling immediately before, at 6h, and 24h after the first and 24h after the second dose of BZM. Using IPA and GSEA up-regulation of the ubiquitin/proteasome pathway and the NRF2-mediated oxidative stress response was again prominent, but an ER stress response was less apparent. XBP1 splicing was not detected in tumor cells from sensitive samples indicating that an ER stress response was not fully activated by BZM in vivo. Consistent with in vitro data the NRF2 signature was induced 2.3-fold on average in sensitive but not in resistant samples (P<0.05). Intriguingly, baseline expression of the NRF2 signature genes was significantly higher in resistant than in sensitive cells (P=0.0007). In summary, we identify NRF2 as critical integrator of different stress pathways in response to BZM in MCL. Thus, rapid induction of NRF2 target genes might be a useful biomarker of BZM-induced cellular stress and predict clinical response. Our data suggest a more complex function of NRF2 than previously appreciated. NRF2-regulated genes serve primarily homeostatic roles and enable cells to deal with oxidative and xenobiotic insults; a function that may come to play in BZM resistant cells with higher baseline expression of NRF2 target genes. On the other hand, our data suggest a possible pro-apoptotic role of acute induction of high levels of NRF2 that is currently under investigation. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 13 (6) ◽  
pp. 337-343 ◽  
Author(s):  
Bhawna Gupta ◽  
Tatiana S. Levchenko ◽  
Dmitry A. Mongayt ◽  
Vladimir P. Torchilin

2021 ◽  
Vol 3 (Supplement_3) ◽  
pp. iii3-iii3
Author(s):  
Jiwei Wang ◽  
Emma Rigg ◽  
Taral R Lunavat ◽  
Wenjing Zhou ◽  
Zichao Feng ◽  
...  

Abstract Background Melanoma has the highest propensity of any cancer to metastasize to the brain, with late-stage patients developing brain metastasis (MBM) in 40% of cases. Survival of patients with MBM is around 8 months with current therapies, illustrating the need for new treatments. MBM development is likely caused by molecular interactions between tumor cells and the brain, constituting the brain metastatic niche. miRNAs delivered by exosomes released by the primary tumor cells may play a role in niche establishment, yet the mechanisms are poorly understood. Here, the aim was to identify miRNAs released by exosomes from melanomas, which may be important in niche establishment and MBM progression. Materials and Methods miRNAs from exosomes collected from human astrocytes, melanocytes, and MBM cell lines were profiled to determine differential expression. Functional in vitro validation was performed by cell growth and migration assays, cytokine arrays, qPCR and Western blots. Functional in vivo studies were performed after miR knockdown in MBM cell lines. An in silico docking study was performed to determine drugs that potentially inhibit transcription of miR-146a to impede MBM development. Results miR-146a was the most upregulated miRNA in exosomes from MBM cells and was highly expressed in human and animal MBM samples. miR-146a mimics activated human astrocytes, shown by increased proliferation and migration, elevated expression of GFAP in vitro and in mouse brain tumor samples, and increased cytokine production. In animal studies, knockdown of miR-146a in MBM cells injected intracardially into mice reduced BM burden and increased animal survival. Based on the docking studies, deserpidine was found to be an effective inhibitor of MBM growth in vitro and in vivo. Conclusions MiR-146a may play an important role in MBM development, and deserpidine is a promising candidate for clinical use.


2020 ◽  
Author(s):  
Tian Qi Zhang ◽  
Qingqiang Dai ◽  
Maneesh Kumarsing Beeharry ◽  
Zhenqiang Wang ◽  
Liping Su ◽  
...  

Abstract Background: Gastric Cancer (GC) is one of the leading causes of cancer-related deaths and mortality. Long non-coding RNAs (lncRNAs) such as SNHG12 play important roles in the pathogenesis and progression of cancers. However, the role and significanve of SNHG12 in the metastasis of GC has not yet been thoroughly investigated.Methods: The SNHG12 expression pattern was detected in GC tissue samples from our faculty and cell lines using quantitative reverse transcription PCR. In vivo and in vitro gain and loss assays were conducted to observe the effects of SNHG12 regulation on GC cell metastasis potential. The underlying mechanisms of SNHG12 regulation on EMT and metastatic potential of GC cells were further determined by quantitative reverse transcription PCR, western blotting, dual luciferase reporter assays, co-immunoprecipitation, immunoprecipitation, RIP assays, TOPFlash/FOPFlash reporter assays and Ch-IP assays.Results: SNHG12 was upregulated in GC tissues and cell lines. The expression levels of SNHG12 in GC samples was significantly related to tumor invasion depth, TNM staging and lymph node metastasis, and was associated with poorer DFS and OS in the GC patients. SNHG12 was significantly highly expressed in peritoneal metastatic tissues from GC patients and mice subjects, suggesting a possible role of SNHG12 in peritoneal carcinomatosis from GC. Further in vivo and in vitro gain and loss assays indicated that SNHG12 promoted GC metastasis and EMT. Based on hypothetical bioinformatic analysis findings, our mechanistic analyses revealed that miR-218-5p was a direct target of SNHG12 and suggested that both SNHG12 and miR-218-5p could collectively regulate YWHAZ, forming the SNHG12/ miR-218-5p/YWHAZ axis, hereby decreasing the ubiquitination of β-catenin, thus activating the β-catenin signaling pathway and facilitating metastasis and EMT. Further analysis also revealed that the transcription factor YY1 could negatively modulate SNHG12 transcription.Conclusions: Our findings demonstrate that SNHG12 is be a potential prognostic marker and therapeutic target for GC. Negatively modulated by transcription factor YYI, SNHG12 promotes GC metastasis and EMT by regulating the miR-218-5p/YWHAZ axis and hence activating the β-catenin signaling pathway. Furthermore, we discovered high SNHG12 expression could be related to peritoneal carcinomatosis from GC but this requires further validation.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii57-ii57
Author(s):  
J Wang ◽  
E K Rigg ◽  
T R Lunavat ◽  
W Zhou ◽  
Z Feng ◽  
...  

Abstract BACKGROUND Melanoma has the highest propensity of any cancer to metastasize to the brain, with late-stage patients developing brain metastasis (MBM) in 40% of cases. Survival of patients with MBM is around 8 months with current therapies, illustrating the need for new treatments. MBM development is likely caused by molecular interactions between tumor cells and the brain, constituting the brain metastatic niche. miRNAs delivered by exosomes released from the primary tumor cells may play a role in niche establishment, yet the mechanisms are poorly understood. Here, the aim was to identify miRNAs released by exosomes from melanomas, which may be important in niche establishment and MBM progression. MATERIAL AND METHODS miRNAs in exosomes collected from human astrocytes, melanocytes, and MBM cell lines were profiled to determine differential expression. Functional in vitro validation was performed by cell growth and migration assays, cytokine arrays, qPCR and Western blots. Functional in vivo studies were performed after miR knockdown in MBM cell lines. An in silico docking study was performed to determine drugs that potentially inhibit transcription of miR-146a to impede MBM development. RESULTS miR-146a was the most upregulated miRNA in exosomes from MBM cells and was highly expressed in human and animal MBM samples. miR-146a mimics activated human astrocytes, shown by increased proliferation and migration, elevated expression of GFAP in vitro and in mouse brain tumor samples, and increased cytokine production. In animal studies, knockdown of miR-146 in MBM cells injected intracardially into mice reduced BM burden and increased animal survival. Based on the docking studies, deserpidine was found to be an effective inhibitor of MBM growth in vitro and in vivo. CONCLUSION miR-146a may play an important role in MBM development, and deserpidine is a promising candidate for clinical use.


2020 ◽  
Vol 13 ◽  
pp. 175628481989543
Author(s):  
Amanda Braga Bona ◽  
Danielle Queiroz Calcagno ◽  
Helem Ferreira Ribeiro ◽  
José Augusto Pereira Carneiro Muniz ◽  
Giovanny Rebouças Pinto ◽  
...  

Background: Gastric cancer is one of the most incident types of cancer worldwide and presents high mortality rates and poor prognosis. MYC oncogene overexpression is a key event in gastric carcinogenesis and it is known that its protein positively regulates CDC25B expression which, in turn, plays an essential role in the cell division cycle progression. Menadione is a synthetic form of vitamin K that acts as a specific inhibitor of the CDC25 family of phosphatases. Methods: To better understand the menadione mechanism of action in gastric cancer, we evaluated its molecular and cellular effects in cell lines and in Sapajus apella, nonhuman primates from the new world which had gastric carcinogenesis induced by N-Methyl-N-nitrosourea. We tested CDC25B expression by western blot and RT-qPCR. In-vitro assays include proliferation, migration, invasion and flow cytometry to analyze cell cycle arrest. In in-vivo experiments, in addition to the expression analyses, we followed the preneoplastic lesions and the tumor progression by ultrasonography, endoscopy, biopsies, histopathology and immunohistochemistry. Results: Our tests demonstrated menadione reducing CDC25B expression in vivo and in vitro. It was able to reduce migration, invasion and proliferation rates, and induce cell cycle arrest in gastric cancer cell lines. Moreover, our in-vivo experiments demonstrated menadione inhibiting tumor development and progression. Conclusions: We suggest this compound may be an important ally of chemotherapeutics in the treatment of gastric cancer. In addition, CDC25B has proven to be an effective target for investigation and development of new therapeutic strategies for this malignancy.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3460
Author(s):  
Mayura Meerang ◽  
Jessica Kreienbühl ◽  
Vanessa Orlowski ◽  
Seraina L. C. Müller ◽  
Michaela B. Kirschner ◽  
...  

Neurofibromatosis type 2 (NF2), the tumor suppressor frequently lost in malignant pleural mesothelioma (MPM), suppresses tumorigenesis in part by inhibiting the Cullin4 ubiquitin ligase (CUL4) complex in the nucleus. Here, we evaluated the importance of CUL4 in MPM progression and tested the efficacy of cullin inhibition by pevonedistat, a small molecule inhibiting cullin neddylation. CUL4 paralogs (CUL4A and CUL4B) were upregulated in MPM tumor specimens compared to nonmalignant pleural tissues. High gene and protein expressions of CUL4B was associated with a worse progression-free survival of MPM patients. Among 13 MPM cell lines tested, five (38%) were highly sensitive to pevonedistat (half maximal inhibitory concentration of cell survival IC50 < 0.5 µM). This remained true in a 3D spheroid culture. Pevonedistat treatment caused the accumulation of CDT1 and p21 in both sensitive and resistant cell lines. However, the treatment induced S/G2 cell cycle arrest and DNA rereplication predominantly in the sensitive cell lines. In an in vivo mouse model, the pevonedistat treatment significantly prolonged the survival of mice bearing both sensitive and resistant MPM tumors. Pevonedistat treatment reduced growth in sensitive tumors but increased apoptosis in resistant tumors. The mechanism in the resistant tumor model may be mediated by reduced macrophage infiltration, resulting from the suppression of macrophage chemotactic cytokines, C-C motif chemokine ligand 2 (CCL2), expression in tumor cells.


Sign in / Sign up

Export Citation Format

Share Document