scholarly journals All-Fibre Label-Free Nano-Sensor for Real-Time in situ Early Monitoring of Cellular Apoptosis

Author(s):  
Dan-ran Li ◽  
Nina Wang ◽  
Tianyang Zhang ◽  
Guangxing Wu ◽  
Yifeng Xiong ◽  
...  

Abstract The achievement of all-fibre functional nano-modules for subcellular label-free measurement has long been pursued due to the limitations of manufacturing techniques. In this paper, a compact all-fibre label-free nano-sensor composed of a fibre taper and zinc oxide nano-gratings is designed and applied for the early monitoring of apoptosis in single living cells. Because of its nanoscale dimensions, mechanical flexibility and minimal cytotoxicity to cells, the sensing module can be loaded in cells for long-term in situ tracking with high sensitivity. A gradual increase in the nuclear refractive index during the apoptosis process is observed, revealing the increase in molecular density and the decrease in cell volume. The strategy used in this study not only contributes to the understanding of internal environmental variations during cellular apoptosis but also provides a new platform for non-fluorescent all-fibre devices to investigate cellular events and to promote new progress in fundamental cell biochemical engineering.

2009 ◽  
Vol 74 ◽  
pp. 337-340
Author(s):  
Tae Song Kim

The microcantilevers have emerged as a versatile biosensor, and showed excellent performance such as high sensitivity, high selectivity, and label-free detection. They have been successfully used for the detection of nucleic acids, disease marker proteins, cells, and pathogens including small molecules. So far, our group has successfully demonstrated the marker protein detection using the actuating layer (PZT)-embedded microcantilevers for the last decade. Here, we introduce in/ex-situ monitoring of the DNA binding events using performance improved actuating layer-embedded microcantilever sensors. To obtain the stable and reliable resonant frequency shifts, the microcantilevers were passivated with parylene-C film for in-situ detection and perfluorosilane (PF-Si) film for ex-situ detection. To achieve the recognition layer, the probe DNA (37-mer including T10 spacers) specific to HBV DNA was immobilized on the gold-coated microcantilever, and followed by backfilling of ethylene glycol spacer (HSC11-EG3-OH) to increase the DNA binding efficiency. After the surface treatment, the detection of HBV DNA (27-mer) was performed through two manners, in-situ and ex-situ. Target DNA in the range of 1 to 20 M and 10 nM to 5 M were applied for the in-situ and ex-situ detection respectively, and the resonant frequency shifts according to the concentration was examined quantitatively. From the results, we explained the relationship between the DNA hybridization and the nanomechanical response. In addition, we presented a hypothesis on the different tendency of in-situ and ex-situ results.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Shahrzad Forouzanfar ◽  
Nezih Pala ◽  
Chunlei Wang

The electrochemical label-free aptamer-based biosensors (also known as aptasensors) are highly suitable for point-of-care applications. The well-established C-MEMS (carbon microelectromechanical systems) platforms have distinguishing features which are highly suitable for biosensing applications such as low background noise, high capacitance, high stability when exposed to different physical/chemical treatments, biocompatibility, and good electrical conductivity. This study investigates the integration of bipolar exfoliated (BPE) reduced graphene oxide (rGO) with 3D C-MEMS microelectrodes for developing PDGF-BB (platelet-derived growth factor-BB) label-free aptasensors. A simple setup has been used for exfoliation, reduction, and deposition of rGO on the 3D C-MEMS microelectrodes based on the principle of bipolar electrochemistry of graphite in deionized water. The electrochemical bipolar exfoliation of rGO resolves the drawbacks of commonly applied methods for synthesis and deposition of rGO, such as requiring complicated and costly processes, excessive use of harsh chemicals, and complex subsequent deposition procedures. The PDGF-BB affinity aptamers were covalently immobilized by binding amino-tag terminated aptamers and rGO surfaces. The turn-off sensing strategy was implemented by measuring the areal capacitance from CV plots. The aptasensor showed a wide linear range of 1 pM–10 nM, high sensitivity of 3.09 mF cm−2 Logc−1 (unit of c, pM), and a low detection limit of 0.75 pM. This study demonstrated the successful and novel in-situ deposition of BPE-rGO on 3D C-MEMS microelectrodes. Considering the BPE technique’s simplicity and efficiency, along with the high potential of C-MEMS technology, this novel procedure is highly promising for developing high-performance graphene-based viable lab-on-chip and point-of-care cancer diagnosis technologies.


2022 ◽  
Vol 4 (01) ◽  
Author(s):  
Danran Li ◽  
Nina Wang ◽  
Tianyang Zhang ◽  
Guangxing Wu ◽  
Yifeng Xiong ◽  
...  

Author(s):  
Suraj Mathur

This prospective study was done in the Department of Radio diagnosis Govt. Medical College, Kozhikode. A total of 65 patients who were referred to our department with clinical suspicion of endometrial lesions and incidentally detected endometrial lesions on ultrasonography underwent transvaginal ultrasound and subsequent Imaging evaluation of pelvis MRI has very high sensitivity (95%) and specificity (98%) and is almost as accurate (97%) as histopathology in differentiating benign from malignant lesions. Addition of DWI with ADC mapping to conventional MRI increases its accuracy even more. However there is inherent limitation to MRI in detecting carcinoma in situ and micrometastasis. Keywords: TVS, MRI, Sensitivity, Specificity, Histopathology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weichao Zhai ◽  
Jerome Tan ◽  
Tobias Russell ◽  
Sixun Chen ◽  
Dennis McGonagle ◽  
...  

AbstractHuman mesenchymal stromal cells (hMSCs) have demonstrated, in various preclinical settings, consistent ability in promoting tissue healing and improving outcomes in animal disease models. However, translation from the preclinical model into clinical practice has proven to be considerably more difficult. One key challenge being the inability to perform in situ assessment of the hMSCs in continuous culture, where the accumulation of the senescent cells impairs the culture’s viability, differentiation potential and ultimately leads to reduced therapeutic efficacies. Histochemical $$\upbeta $$ β -galactosidase staining is the current standard for measuring hMSC senescence, but this method is destructive and not label-free. In this study, we have investigated alternatives in quantification of hMSCs senescence, which included flow cytometry methods that are based on a combination of cell size measurements and fluorescence detection of SA-$$\upbeta $$ β -galactosidase activity using the fluorogenic substrate, C$${_{12}}$$ 12 FDG; and autofluorescence methods that measure fluorescence output from endogenous fluorophores including lipopigments. For identification of senescent cells in the hMSC batches produced, the non-destructive and label-free methods could be a better way forward as they involve minimum manipulations of the cells of interest, increasing the final output of the therapeutic-grade hMSC cultures. In this work, we have grown hMSC cultures over a period of 7 months and compared early and senescent hMSC passages using the advanced flow cytometry and autofluorescence methods, which were benchmarked with the current standard in $$\upbeta $$ β -galactosidase staining. Both the advanced methods demonstrated statistically significant values, (r = 0.76, p $$\le $$ ≤ 0.001 for the fluorogenic C$${_{12}}$$ 12 FDG method, and r = 0.72, p $$\le $$ ≤ 0.05 for the forward scatter method), and good fold difference ranges (1.120–4.436 for total autofluorescence mean and 1.082–6.362 for lipopigment autofluorescence mean) between early and senescent passage hMSCs. Our autofluroescence imaging and spectra decomposition platform offers additional benefit in label-free characterisation of senescent hMSC cells and could be further developed for adoption for future in situ cellular senescence evaluation by the cell manufacturers.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1635
Author(s):  
Ya Su ◽  
Rongxin Fu ◽  
Wenli Du ◽  
Han Yang ◽  
Li Ma ◽  
...  

Quantitative measurement of single cells can provide in-depth information about cell morphology and metabolism. However, current live-cell imaging techniques have a lack of quantitative detection ability. Herein, we proposed a label-free and quantitative multichannel wide-field interferometric imaging (MWII) technique with femtogram dry mass sensitivity to monitor single-cell metabolism long-term in situ culture. We demonstrated that MWII could reveal the intrinsic status of cells despite fluctuating culture conditions with 3.48 nm optical path difference sensitivity, 0.97 fg dry mass sensitivity and 2.4% average maximum relative change (maximum change/average) in dry mass. Utilizing the MWII system, different intrinsic cell growth characteristics of dry mass between HeLa cells and Human Cervical Epithelial Cells (HCerEpiC) were studied. The dry mass of HeLa cells consistently increased before the M phase, whereas that of HCerEpiC increased and then decreased. The maximum growth rate of HeLa cells was 11.7% higher than that of HCerEpiC. Furthermore, HeLa cells were treated with Gemcitabine to reveal the relationship between single-cell heterogeneity and chemotherapeutic efficacy. The results show that cells with higher nuclear dry mass and nuclear density standard deviations were more likely to survive the chemotherapy. In conclusion, MWII was presented as a technique for single-cell dry mass quantitative measurement, which had significant potential applications for cell growth dynamics research, cell subtype analysis, cell health characterization, medication guidance and adjuvant drug development.


Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lenka Ulrychová ◽  
Pavel Ostašov ◽  
Marta Chanová ◽  
Michael Mareš ◽  
Martin Horn ◽  
...  

Abstract Background The blood flukes of genus Schistosoma are the causative agent of schistosomiasis, a parasitic disease that infects more than 200 million people worldwide. Proteases of schistosomes are involved in critical steps of host–parasite interactions and are promising therapeutic targets. We recently identified and characterized a group of S1 family Schistosoma mansoni serine proteases, including SmSP1 to SmSP5. Expression levels of some SmSPs in S. mansoni are low, and by standard genome sequencing technologies they are marginally detectable at the method threshold levels. Here, we report their spatial gene expression patterns in adult S. mansoni by the high-sensitivity localization assay. Methodology Highly sensitive fluorescence in situ RNA hybridization (FISH) was modified and used for the localization of mRNAs encoding individual SmSP proteases (including low-expressed SmSPs) in tissues of adult worms. High sensitivity was obtained due to specifically prepared tissue and probes in combination with the employment of a signal amplification approach. The assay method was validated by detecting the expression patterns of a set of relevant reference genes including SmCB1, SmPOP, SmTSP-2, and Sm29 with localization formerly determined by other techniques. Results FISH analysis revealed interesting expression patterns of SmSPs distributed in multiple tissues of S. mansoni adults. The expression patterns of individual SmSPs were distinct but in part overlapping and were consistent with existing transcriptome sequencing data. The exception were genes with significantly low expression, which were also localized in tissues where they had not previously been detected by RNA sequencing methods. In general, SmSPs were found in various tissues including reproductive organs, parenchymal cells, esophagus, and the tegumental surface. Conclusions The FISH-based assay provided spatial information about the expression of five SmSPs in adult S. mansoni females and males. This highly sensitive method allowed visualization of low-abundantly expressed genes that are below the detection limits of standard in situ hybridization or by RNA sequencing. Thus, this technical approach turned out to be suitable for sensitive localization studies and may also be applicable for other trematodes. The results suggest that SmSPs may play roles in diverse processes of the parasite. Certain SmSPs expressed at the surface may be involved in host–parasite interactions. Graphic abstract


2001 ◽  
Vol 82 (2) ◽  
pp. 350-354 ◽  
Author(s):  
Yuhong Xiao ◽  
Shigemi Sato ◽  
Takaaki Oguchi ◽  
Kaori Kudo ◽  
Yoshihito Yokoyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document