scholarly journals An Ecofriendly Synthesis of 2-oxazolidinone From 2-aminoethanol and Urea Under Solvent-free Condition Using CeO2 Nanoparticles

Author(s):  
ALI NEMATI KHARAT ◽  
Mehrnaz Aliahmadi

Abstract Cerium dioxide nanoparticles were prepared by the sol-gel method using cellulose as a template and used in the synthesis of 2-oxazolidinone from urea and 2-aminoethanol under solvent-free conditions. All the reaction parameters were optimized to obtain the best selectivity and conversion. The selectivity of 100 % to 2-oxazolidinone with a pretty complete conversion of about 98.4 % was achieved. The prepared catalyst was characterized by Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and volumetric isothermal nitrogen gas adsorption-desorption method (BET).

NANO ◽  
2020 ◽  
Vol 15 (02) ◽  
pp. 2050017
Author(s):  
Ke-Cheng Yang ◽  
Li-Hui Xu ◽  
Hong Pan ◽  
Li-Ming Wang ◽  
Yong Shen ◽  
...  

In this study, CuS/SiO2 composite modified aerogel was prepared by the incorporation of hollow spherical CuS into methyltrimethoxysilane-based SiO2 sol and modification with hexadecafluorodecyltriethoxysilane via acid-base catalyzed sol–gel reaction and drying under ambient pressure. The CuS/SiO2 composite modified aerogel was characterized by Fourier-transform infrared (FT-IR) spectrometry, scanning electron microscope (SEM), nitrogen gas adsorption and desorption and X-ray diffraction (XRD), respectively. The effects of CuS and fluorosilane concentration on density and porosity of aerogel, oleophobic and photocatalytic properties were evaluated. The results showed that structure and physical properties of aerogel had some effect by introducing CuS and fluorosilane, and the CuS/SiO2 composite modified aerogel with density of 0.146[Formula: see text]g/cm3 and specific surface area of 241[Formula: see text]m2/g achieved super-oleophobicity with oil contact angle of 152.8∘ and sliding angle of 10∘, and good photocatalytic properties for methylene blue.


2019 ◽  
Vol 26 (1) ◽  
pp. 292-300 ◽  
Author(s):  
Vanja Gilja ◽  
Zvonimir Katančić ◽  
Ljerka Kratofil Krehula ◽  
Vilko Mandić ◽  
Zlata Hrnjak-Murgić

AbstractThe waste fly ash (FA) material was subjected to chemical treatment with HCl at elevated temperature for a different time to modify its porosity. Modified FA particles with highest surface area and pore volume were further used as a support for TiO2 catalyst during FA/TiO2 nanocomposite preparation. The nanocomposite photocatalysts were obtained by in situ sol–gel synthesis of titanium dioxide in the presence of FA particles. To perform accurate characterization of modified FA and FA/TiO2 nanocomposite photocatalysts, gas adsorption-desorption analysis, X-ray diffraction, scanning electron microscopy, UV/Vis and Infrared spectroscopy were used. Efficiency evaluation of the synthesized FA/TiO2 nanocomposites was performed by following the removal of Reactive Red 45 (RR45) azo dye during photocatalytic treatment under the UV-A irradiation. Photocatalysis has been carried out up to five cycles with the same catalysts to investigate their stability and the possible reuse. The FA/TiO2 photocatalyst showed very good photocatalytic activity and stability even after the fifth cycles. The obtained results show that successfully modified waste fly ash can be used as very good TiO2 support.


2020 ◽  
Vol 15 (1) ◽  
pp. 10-20
Author(s):  
Indar Kustiningsih ◽  
Ria Restiani ◽  
Teja Raharja ◽  
Athia Hasna ◽  
Denni Kartika Sari

Degradation of methyl violet using photocatalysis method has been investigated. In this study TiO2 was superimposed on the surface of the Bayah natural zeolite with two solvents, ethanol and distilled water. The activation of the Bayah natural zeolite using HCl. In this study the effect of zeolite size (60.80 and 100 mesh), the composition of TiO2-Zeolite (0.2, 0.4 and 0.6) and intensity of photon energy on the degradation of methyl violet has been evaluated. The samples were were characterized by means X-ray powder diffractometer (XRD). The specific surface area of each sample was determined by the BET nitrogen gas adsorption/desorption method. The measurement of methyl violet concentration using UV Vis spectrophotometry. The results showed the optimum composition of TiO2 in zeolite was 4 grams with a solvent of distilled water. By Using this sample could reduce methyl violet by 94,5% for 4 hours with UV light intensity of 1340 μW /cm2.


2021 ◽  
Vol 11 (5) ◽  
pp. 706-716
Author(s):  
Nada D. Al-Khthami ◽  
Tariq Altalhi ◽  
Mohammed Alsawat ◽  
Mohamed S. Amin ◽  
Yousef G. Alghamdi ◽  
...  

Different organic pollutants have been remediated photo catalytically by applying perovskite photocatalysts. Atrazine (ATR) is a pesticide commonly detected as a pollutant in drinking, surface and ground water. Herein, FeYO3@rGO heterojunction was synthesized and applied for photooxidation decomposition of ATR. First, FeYO 3nanoparticles (NPs) were prepared via routine sol-gel. After that, FeYO3 NPs were successfully incorporated with different percentages (5, 10, 15 and 20 wt.%) of reduced graphene oxide (rGO) in the synthesis of novel FeYO3@rGO photocatalyst. Morphological, structural, surface, optoelectrical and optical characteristics of constructed materials were identified via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), adsorption/desorption isotherms, diffusive reflectance (DR) spectra, and photoluminescence response (PL). Furthermore, photocatalytic achievement of the constructed materials was evaluated via photooxidative degradation of ATR. Various investigations affirmed the usefulness of rGO incorporation on the advancement of formed photocatalysts. Actually, novel nanocomposite containing rGO (15 wt.%) possessed diminished bandgap energy, as well as magnified visible light absorption. Furthermore, such nanocomposite presented exceptional photocatalytic achievement when exposed to visible light as ATR was perfectly photooxidized over finite amount (1.6 g · L-1) from the optimized photocatalyst when illuminated for 30 min. The advanced photocatalytic performance of constructed heterojunctions could be accredited mainly to depressed recombination amid induced charges. The constructed FeYO3@rGO nanocomposite is labelled as efficient photocatalyst for remediation of herbicides from aquatic environments.


2014 ◽  
Vol 896 ◽  
pp. 541-544
Author(s):  
Is Fatimah ◽  
N. Nunani Yuyun

ZnO-SiO2/Laponite was prepared by sol-gel preparation procedure consit of SiO2 pillarization to laponite followed by ZnO dispersion by using zinc acetate as precursor. The obtained material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), diffuse reflectance UV-Visible (DRUV-Vis) and N2 adsorption-desorption analysis. The photocatalytic performance of the amterial in methylene blue decolorization was also investigated. Compared with ZnO-SiO2 nanoparticles, it is concluded that ZnO-SiO2/Laponite possess higher photocatalytic activity which obey Temkin isotherm model.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1771 ◽  
Author(s):  
Stefan Neatu ◽  
Mihaela M. Trandafir ◽  
Adelina Stănoiu ◽  
Ovidiu G. Florea ◽  
Cristian E. Simion ◽  
...  

This study presents the synthesis and characterization of lanthanum-modified alumina supported cerium–manganese mixed oxides, which were prepared by three different methods (coprecipitation, impregnation and citrate-based sol-gel method) followed by calcination at 500 °C. The physicochemical properties of the synthesized materials were investigated by various characterization techniques, namely: nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and H2–temperature programmed reduction (TPR). This experimental study demonstrated that the role of the catalytic surface is much more important than the bulk one. Indeed, the incipient impregnation of CeO2–MnOx catalyst, supported on an optimized amount of 4 wt.% La2O3–Al2O3, provided the best results of the catalytic combustion of methane on our catalytic micro-convertors. This is mainly due to: (i) the highest pore size dimensions according to the Brunauer-Emmett-Teller (BET) investigations, (ii) the highest amount of Mn4+ or/and Ce4+ on the surface as revealed by XPS, (iii) the presence of a mixed phase (Ce2MnO6) as shown by X-ray diffraction; and (iv) a higher reducibility of Mn4+ or/and Ce4+ species as displayed by H2–TPR and therefore more reactive oxygen species.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aidong Tang ◽  
Yuehua Deng ◽  
Jiao Jin ◽  
Huaming Yang

A novel nanocomposite ZnFe2O4-TiO2/MCM-41 (ZTM) was synthesized by a sol-gel method and characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2adsorption-desorption, Raman spectroscopy, and ultraviolet visible (UV-vis) spectrophotometry. The results confirmed the incorporation of ZnFe2O4-TiO2nanoparticles inside the pores of the mesoporous MCM-41 host without destroying its integrity. ZnFe2O4nanoparticles can inhibit the transformation of anatase into rutile phase of TiO2. Incorporation of ZnFe2O4-TiO2within MCM-41 avoided the agglomeration of nanoparticles and reduced the band gap energy of TiO2to enhance its visible light photocatalytic activity. UV-vis absorption edges of ZTM nanocomposites redshifted with the increase of Zn/Ti molar ratio. The nanocomposite approach could be a potential choice for enhancing the photoactivity of TiO2, indicating an interesting application in the photodegradation and photoelectric fields.


Chemosensors ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 79
Author(s):  
Tatiana N. Myasoedova ◽  
Nina K. Plugotarenko ◽  
Tatiana A. Moiseeva

The citrate sol–gel method was utilized for the fabrication of copper-containing films sensitive to NO2 gas. Effect of annealing temperature on the film phase composition, morphology, and sensor response was studied. X-ray diffraction reveals the formation of Cu2Cl(OH)3 phase at 250 °C and the CuO phase at 350 and 500 °C. It was found out that the films annealed at 250 °C and 350 °C showed the best sensor characteristics. The influence of thermal degradation on the probability of percolation effect in films and its connection to a decrease of gas sensitivity was studied. The kinetics of the NO2 gas adsorption on the film’s surface was described following the Elovich model. Activation energy estimated from the ln(S) vs. 1/T plots was 252 and 30 kJ/mol for the films annealed at 250 and 350 °C, respectively.


2019 ◽  
Author(s):  
Chem Int

Heterogeneous catalyst, H2SO4/SiO2 was synthesized by immobilizing sulfuric acid on silica gel as solid support. Silica gel was prepared from kaolin, originating from Belitung island Indonesia. The synthesized catalyst was characterized by various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform Infrared spectroscopy and BET method and was applied for the acetylation of (+)-cedrol compound using acetic anhydride under solvent free conditions. The optimum conditions for catalytic acetylation were found at 353 K for 20 h reaction period, the molar ratio (+)-cedrol/acetic anhydride 1:10 in the presence of 5%-w of catalyst converted 88,7% (+)-cedrol into cedryl acetate. Results revealed catalyst could possibly be used for cedryl acetate synthesis from (+)-cedrol.


2006 ◽  
Vol 306-308 ◽  
pp. 1103-1108
Author(s):  
Abdul Hadi ◽  
Iskandar Idris Yaacob

Nanocrystalline CeO2 has been synthesized at room temperature using water-in-oil (w/o) microemulsion technique. The structure and properties of the nanocrystalline CeO2 were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and gas adsorption desorption measurement. XRD results showed the synthesized CeO2 has a face centered cubic structure with crystallite size of about 5.2 nm. TEM observation also indicated the presence of nanometer sized particles of CeO2. Coarser particles were also observed due to agglomeration. Gas adsorption desorption isotherms showed the behavior of fine particles with mesoporous structure.


Sign in / Sign up

Export Citation Format

Share Document