scholarly journals Arene–Metal-Ion Contact: A Multicolor and Ratiometric Fluorescence Sensing Platform for Metal Ions

2020 ◽  
Author(s):  
Anna Kanegae ◽  
Yusuke Takata ◽  
Ippei Takashima ◽  
Shohei Uchinomiya ◽  
Ryosuke Kawagoe ◽  
...  

Abstract Despite continuous active development of fluorescent probes for metal-ions, their molecular design for ratiometric detection is limited owing to a narrow choice of available sensing mechanisms. We present herein a dual-emission sensing platform for metal ions based on contact interaction between a coordinated metal ion and the aromatic ring of a fluorophore (i.e., arene–metal-ion contact). Our structure-based ligand design provided a new probe possessing BPTN as the metal ion binding unit, which was flexibly concatenated to a tricyclic fluorophore. This molecular architecture allowed us to fluorescently sense various metal ions such as Zn(II), Cu(II), Cd(II), Ag(I), and Hg(II) with the red-shifted emissions. This probe design was applicable to a series of tricyclic fluorophores, enabling ratiometric detection of the metal ions across the blue to near-infrared wavelength region. X-ray crystallography and theoretical computational calculation indicated that the coordinated metal ion has van der Waals contact with the fluorophore, which perturbs its electronic structure and ring conformation to induce the emission red-shift. A set of the arene–metal-ion contact probes was used for the differential sensing of eight metal ions in a one-pot single titration via PCA analysis. Furthermore, the probe was applicable to the ratio imaging of metal ions under live-cell conditions.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anna Kanegae ◽  
Yusuke Takata ◽  
Ippei Takashima ◽  
Shohei Uchinomiya ◽  
Ryosuke Kawagoe ◽  
...  

AbstractDespite continuous and active development of fluorescent metal-ion probes, their molecular design for ratiometric detection is restricted by the limited choice of available sensing mechanisms. Here we present a multicolor and ratiometric fluorescent sensing platform for metal ions based on the interaction between the metal ion and the aromatic ring of a fluorophore (arene–metal-ion, AM, coordination). Our molecular design provided the probes possessing a 1,9-bis(2′-pyridyl)-2,5,8-triazanonane as a flexible metal ion binding unit attached to a tricyclic fluorophore. This architecture allows to sense various metal ions, such as Zn(II), Cu(II), Cd(II), Ag(I), and Hg(II) with emission red-shifts. We showed that this probe design is applicable to a series of tricyclic fluorophores, which allow ratiometric detection of the metal ions from the blue to the near-infrared wavelengths. X-ray crystallography and theoretical calculations indicate that the coordinated metal ion has van der Waals contact with the fluorophore, perturbing the dye’s electronic structure and ring conformation to induce the emission red-shift. A set of the probes was useful for the differential sensing of eight metal ions in a one-pot single titration via principal component analysis. We also demonstrate that a xanthene fluorophore is applicable to the ratiometric imaging of metal ions under live-cell conditions.


1989 ◽  
Vol 67 (11) ◽  
pp. 1708-1710 ◽  
Author(s):  
Zaihui Zhang ◽  
T. L. Thomas Hui ◽  
Chris Orvig

A series of tris(3-hydroxy-2-methyl-4-pyridinonato)metal(III) and tris(3-hydroxy-6-hydroxymethyl-4-pyridinonato)metal(III) complexes have been prepared in water by one-pot synthesis directly from maltol and kojic acid, respectively, and the metal ion (M = Al, Ga, In) with an appropriate amine. The pyridinones have substituents at the ring nitrogen atom (CH3, C2H5). The tris(3-hydroxy-4-pyronato)metal(III) complexes are formed insitu and these undergo nucleophilic attack by the primary amine; the appropriate tris(3-hydroxy-4-pyridinonato)metal(III) complexes are obtained. This method bypasses the sequential syntheses of ligand and metal complex, and has improved the yields of the tris(ligand)metal complexes, in particular by making them much more easily accessible. The electronic effects of binding the pyrone to the metal ions and of the substituents on the pyrone ring on the reactivity are discussed. Keywords: 3-hydroxy-4 pyridinone complexes, group 13 metal ions, one-pot synthesis.


RSC Advances ◽  
2017 ◽  
Vol 7 (40) ◽  
pp. 24970-24980 ◽  
Author(s):  
Chirantan Kar ◽  
Yutaka Shindo ◽  
Kotaro Oka ◽  
Shigeru Nishiyama ◽  
Koji Suzuki ◽  
...  

This work reports cyanine based spirocyclic metal ion probes, showing a fluorescence turn-on response to various metal ions in the near-infrared spectral region.


2016 ◽  
Vol 7 (42) ◽  
pp. 6513-6520 ◽  
Author(s):  
Yuming Zhao ◽  
Wen Zhu ◽  
Ying Wu ◽  
Lin Qu ◽  
Zhengping Liu ◽  
...  

A one-pot strategy from ring-opening metathesis polymerization was employed to prepare AIE-active star polymers, which were designed to have multi-responsive fluorescence to varied stimuli including pH, CO2, and metal ions.


2017 ◽  
Vol 76 (2) ◽  
pp. 452-458 ◽  
Author(s):  
Sen Lin ◽  
Lili Liu ◽  
Yong Yang ◽  
Wei Zhang ◽  
Meng Xu ◽  
...  

In this paper, the amine-functionalized magnetite hollow nanospheres (AMHNs), prepared through a facile one-pot synthesis, were used as heavy metal ion adsorbents, whose morphology and physicochemical features were exploring by transmission electron microscopy, vibrating sample magnetometer, X-ray diffraction and Fourier-transform infrared analyses. Its adsorption performances for Pb2+, Cu2+, Zn2+, Ni2+ and Cd2+ were studied in detail. The adsorption increased with the increase of initial pH value of the solution and could be obviously affected by ionic strength. Also, the adsorption kinetics and isotherms were studied. The adsorption processes for Pb2+, Cu2+, Zn2+, Ni2+ and Cd2+ could all reach equilibrium in 60 min and be described well by the Langmuir thermodynamics model. The saturated adsorption capacities for Pb2+, Cu2+, Zn2+, Ni2+ and Cd2+ were 0.66, 0.47, 0.45, 0.38 and 0.26 mmol/g, respectively. In addition, the competitive adsorption showed the AMHNs had higher affinity to Pb2+ than to other heavy metal ions.


Author(s):  
Yunyun Gui ◽  
Yihe Wang ◽  
Chiyang He ◽  
Zhouqing Tan ◽  
Lingfeng Gao ◽  
...  

Novel multi-optical signal channel gold nanoclusters (MS-AuNCs) with CL and FL properties were designed and prepared by a one-pot method. Then the CL and FL spectra of MS-AuNCs were applied to the sensing array for heavy metal ion differentiation.


2019 ◽  
Vol 11 (19) ◽  
pp. 5186 ◽  
Author(s):  
Jing Qian ◽  
Tianjiao Yang ◽  
Weiping Zhang ◽  
Yuchen Lei ◽  
Chengli Zhang ◽  
...  

NH2-Fe2O3 and NH2-Fe2O3/chitosan (NH2-Fe2O3/CS) with excellent physical properties and high adsorption capacities for several heavy metal ions were synthesized using a one-pot hydrothermal method. The materials were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Physicochemical properties were determined by the Fourier transform infrared spectra (FTIR) and nitrogen adsorption analysis (Brunauer–Emmett–Teller (BET) method). The results of the characterization studies show that the material is uniformly dispersed and has good crystallinity and well-defined porous particles. The material is mesoporous, and the particles have a specific surface area of 55.41–233.03 m2·g−1, a total pore volume of 0.24–0.54 cm3·g−1, and a diameter of 3.83–17.56 nm. Additional results demonstrate that NH2-Fe2O3 and NH2-Fe2O3/CS are effective adsorbents for the removal of heavy metal ions from solution. In a ternary system, the order of their selective adsorption was determined to be Pb(II) > Cu(II) > Cd(II), and the adsorption rate of Pb(II) was much higher than that of Cu(II) and Cd (II). The metal ion adsorption capacity of NH2-Fe2O3 and NH2-Fe2O3/CS makes them promising adsorbents for wastewater cleanup.


2019 ◽  
Author(s):  
Chem Int

A study of removal of heavy metal ions from heavy metal contaminated water using agro-waste was carried out with Musa paradisiaca peels as test adsorbent. The study was carried by adding known quantities of lead (II) ions and cadmium (II) ions each and respectively into specific volume of water and adding specific dose of the test adsorbent into the heavy metal ion solution, and the mixture was agitated for a specific period of time and then the concentration of the metal ion remaining in the solution was determined with Perkin Elmer Atomic absorption spectrophotometer model 2380. The effect of contact time, initial adsorbate concentration, adsorbent dose, pH and temperature were considered. From the effect of contact time results equilibrium concentration was established at 60minutes. The percentage removal of these metal ions studied, were all above 90%. Adsorption and percentage removal of Pb2+ and Cd2+ from their aqueous solutions were affected by change in initial metal ion concentration, adsorbent dose pH and temperature. Adsorption isotherm studies confirmed the adsorption of the metal ions on the test adsorbent with good mathematical fits into Langmuir and Freundlich adsorption isotherms. Regression correlation (R2) values of the isotherm plots are all positive (>0.9), which suggests too, that the adsorption fitted into the isotherms considered.


2019 ◽  
Vol 9 (2) ◽  
pp. 151-162
Author(s):  
Shveta Acharya ◽  
Arun Kumar Sharma

Background: The metal ions play a vital role in a large number of widely differing biological processes. Some of these processes are quite specific in their metal ion requirements. In that only certain metal ions, in specific oxidation states, can full fill the necessary catalytic or structural requirement, while other processes are much less specific. Objective: In this paper we report the binding of Mn (II), Ni (II) and Co (II) with albumin are reported employing spectrophotometric and pH metric method. In order to distinguish between ionic and colloidal linking, the binding of metal by using pH metric and viscometric methods and the result are discussed in terms of electrovalent and coordinate bonding. Methods: The binding of Ni+2, Co+2 and Mn+2 ions have been studied with egg protein at different pH values and temperatures by the spectrometric technique. Results: The binding data were found to be pH and temperature dependent. The intrinsic association constants (k) and the number of binding sites (n) were calculated from Scatchard plots and found to be at the maximum at lower pH and at lower temperatures. Therefore, a lower temperature and lower pH offered more sites in the protein molecule for interaction with these metal ions. Statistical effects seem to be more significant at lower Ni+2, Co+2 and Mn+2 ions concentrations, while at higher concentrations electrostatic effects and heterogeneity of sites are more significant. Conclusion: The pH metric as well as viscometric data provided sufficient evidence about the linking of cobalt, nickel and manganese ions with the nitrogen groups of albumin. From the nature and height of curves in the three cases it may be concluded that nickel ions bound strongly while the cobalt ions bound weakly.


Sign in / Sign up

Export Citation Format

Share Document