scholarly journals A Genomic Census of the Chicken Gut Microbiome using Metagenomics and Culture

2020 ◽  
Author(s):  
Rachel Gilroy ◽  
Anuradha Ravi ◽  
Maria Getino ◽  
Isabella Pursley ◽  
Daniel Horton ◽  
...  

Abstract Background. The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to deliver a genomic census of this complex microbial community. Results. We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all (n=582) relevant publicly available chicken metagenomes, to cluster over 20 million non-redundant genes and to construct over 5,500 metagenome-assembled bacterial genomes. In addition, we recovered nearly 600 bacteriophage genomes This represents the most comprehensive view of the chicken gut associated microbiome to date, encompassing dozens of novel candidate bacterial genera and hundreds of novel candidate species. To provide a stable, clear and memorable nomenclature for novel species, we devised a scalable combinatorial system for the creation of hundreds of well-formed Latin binomials. We cultured and genome-sequenced bacterial isolates from faeces, documenting thirty novel species, together with three species from the genus Escherichia, including the newly named species Escherichia whittamii.Conclusions. Our metagenomic and culture-based analyses provide new insights into the bacterial, archaeal and bacteriophage components of the chicken gut microbiome. The resulting datasets expand the known diversity of the chicken gut microbiome and provides a key resource for future high-resolution taxonomic and functional studies on the chicken gut microbiome.

2020 ◽  
Author(s):  
Rachel Gilroy ◽  
Anuradha Ravi ◽  
Maria Getino ◽  
Isabella Pursley ◽  
Daniel Horton ◽  
...  

Abstract Background. The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to deliver a genomic blueprint of this complex microbial community.Results. We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all (n=582) relevant publicly available chicken metagenomes, to cluster over 20 million non-redundant genes and to construct over 5,500 metagenome-assembled bacterial genomes. In addition, we recovered nearly 600 bacteriophage genomes This represents the most comprehensive view of the chicken gut associated microbiome to date, encompassing dozens of novel candidate bacterial genera and hundreds of novel candidate species. Keen to provide a stable, clear and memorable nomenclature for novel species, we devised a scalable combinatorial system for the creation of hundreds of well-formed Latin binomials. We cultured and genome-sequenced bacterial isolates from faeces, documenting thirty novel species, together with three species from the genus Escherichia, including the newly named species Escherichia whittamii.Conclusions. Our metagenomic and culture-based analyses provide new insights into the bacterial, archaeal and bacteriophage components of the chicken gut microbiome. The resulting datasets expand the known diversity of the chicken gut microbiome and provides a key resource for future high-resolution taxonomic and functional studies on the chicken gut microbiome.


2020 ◽  
Author(s):  
Rachel Gilroy ◽  
Anuradha Ravi ◽  
Maria Getino ◽  
Isabella Pursley ◽  
Daniel Horton ◽  
...  

Abstract Background: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to deliver a genomic blueprint of this complex microbial community. Results: We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all (n=582) relevant publicly available chicken metagenomes, to cluster over 20 million non-redundant genes and to construct over 5,500 metagenome-assembled bacterial genomes. In addition, we recovered nearly 600 bacteriophage genomes This represents the most comprehensive view of the chicken gut associated microbiome to date, encompassing dozens of novel candidate bacterial genera and hundreds of novel candidate species. Keen to provide a stable, clear and memorable nomenclature for novel species, we devised a scalable combinatorial system for the creation of hundreds of well-formed Latin binomials. We cultured bacterial isolates from faeces to deliver 282 whole genome sequences, incorporating thirty novel species, together with three species from the genus Escherichia, including the newly named species Escherichia whittamii.Conclusions: Our metagenomic and culture-based analyses provide new insights into the bacterial, archaeal and bacteriophage components of the chicken gut microbiome. The resulting datasets expand the known diversity of the chicken gut microbiome and provides a key resource for future high-resolution taxonomic and functional studies on the chicken gut microbiome.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10941
Author(s):  
Rachel Gilroy ◽  
Anuradha Ravi ◽  
Maria Getino ◽  
Isabella Pursley ◽  
Daniel L. Horton ◽  
...  

Background The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. Results We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all (n = 582) relevant publicly available chicken metagenomes, to cluster over 20 million non-redundant genes and to construct over 5,500 metagenome-assembled bacterial genomes. In addition, we recovered nearly 600 bacteriophage genomes. This represents the most comprehensive view of taxonomic diversity within the chicken gut microbiome to date, encompassing hundreds of novel candidate bacterial genera and species. To provide a stable, clear and memorable nomenclature for novel species, we devised a scalable combinatorial system for the creation of hundreds of well-formed Latin binomials. We cultured and genome-sequenced bacterial isolates from chicken faeces, documenting over forty novel species, together with three species from the genus Escherichia, including the newly named species Escherichia whittamii. Conclusions Our metagenomic and culture-based analyses provide new insights into the bacterial, archaeal and bacteriophage components of the chicken gut microbiome. The resulting datasets expand the known diversity of the chicken gut microbiome and provide a key resource for future high-resolution taxonomic and functional studies on the chicken gut microbiome.


2021 ◽  
Author(s):  
Rachel Gilroy ◽  
Joy Leng ◽  
Anuradha Ravi ◽  
Evelien M Adriaenssens ◽  
Aharon Oren ◽  
...  

Background: The horse plays crucial roles across the globe, including in horseracing, as a working and companion animal and as a food animal. The horse hindgut microbiome makes a key contribution in turning a high fiber diet into body mass and horsepower. However, despite its importance, the horse hindgut microbiome remains largely undefined. Here, we applied culture-independent shotgun metagenomics to thoroughbred equine faecal samples to deliver novel insights into this complex microbial community. Results: We performed metagenomic sequencing on five equine faecal samples to construct 123 high- or medium-quality metagenome-assembled genomes from Bacteria and Archaea. In addition, we recovered nearly 200 bacteriophage genomes. We document surprising taxonomic and functional diversity, encompassing dozens of novel or unnamed bacterial genera and species, to which we have assigned new Candidatus names. Many of these genera are conserved across a range of mammalian gut microbiomes. Conclusions: Our metagenomic analyses provide new insights into the bacterial, archaeal and bacteriophage components of the horse gut microbiome. The resulting datasets provide a key resource for future high-resolution taxonomic and functional studies on the equine gut microbiome.


2021 ◽  
Vol 9 (4) ◽  
pp. 707
Author(s):  
J. Christopher Noone ◽  
Fabienne Antunes Ferreira ◽  
Hege Vangstein Aamot

Our culture-independent nanopore shotgun metagenomic sequencing protocol on biopsies has the potential for same-day diagnostics of orthopaedic implant-associated infections (OIAI). As OIAI are frequently caused by Staphylococcus aureus, we included S. aureus genotyping and virulence gene detection to exploit the protocol to its fullest. The aim was to evaluate S. aureus genotyping, virulence and antimicrobial resistance genes detection using the shotgun metagenomic sequencing protocol. This proof of concept study included six patients with S. aureus-associated OIAI at Akershus University Hospital, Norway. Five tissue biopsies from each patient were divided in two: (1) conventional microbiological diagnostics and genotyping, and whole genome sequencing (WGS) of S. aureus isolates; (2) shotgun metagenomic sequencing of DNA from the biopsies. Consensus sequences were analysed using spaTyper, MLST, VirulenceFinder, and ResFinder from the Center for Genomic Epidemiology (CGE). MLST was also compared using krocus. All spa-types, one CGE and four krocus MLST results matched Sanger sequencing results. Virulence gene detection matched between WGS and shotgun metagenomic sequencing. ResFinder results corresponded to resistance phenotype. S. aureus spa-typing, and identification of virulence and antimicrobial resistance genes are possible using our shotgun metagenomics protocol. MLST requires further optimization. The protocol has potential application to other species and infection types.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A711-A711
Author(s):  
Matthew Robinson ◽  
Kevin Vervier ◽  
Simon Harris ◽  
David Adams ◽  
Doreen Milne ◽  
...  

BackgroundThe gut microbiome of cancer patients appears to be associated with response to Immune Checkpoint Inhibitor (ICIs) treatment.1–4 However, the bacteria linked to response differ between published studies.MethodsLongitudinal stool samples were collected from 69 patients with advanced melanoma receiving approved ICIs in the Cambridge (UK) MELRESIST study. Pretreatment samples were analysed by Microbiotica, using shotgun metagenomic sequencing. Microbiotica’s sequencing platform comprises the world’s leading Reference Genome Database and advanced Microbiome Bioinformatics to give the most comprehensive and precise mapping of the gut microbiome. This has enabled us to identify gut bacteria associated with ICI response missed using public reference genomes. Published microbiome studies in advanced melanoma,1–3renal cell carcinoma (RCC) and non-small cell lung cancer (NSCLC)4 were reanalysed with the same platform.ResultsAnalysis of the MELRESIST samples showed an overall change in the microbiome composition between advanced melanoma patients and a panel of healthy donor samples, but not between patients who subsequently responded or did not respond to ICIs. However, we did identify a discrete microbiome signature which correlated with response. This signature predicted response with an accuracy of 93% in the MELRESIST cohort, but was less predictive in the published melanoma cohorts.1–3 Therefore, we developed a bioinformatic analytical model, incorporating an interactive random forest model and the MELRESIST dataset, to identify a microbiome signature which was consistent across all published melanoma studies. This model was validated three times by accurately predicting the outcome of an independent cohort. A final microbiome signature was defined using the validated model on MELRESIST and the three published melanoma cohorts. This was very accurate at predicting response in all four studies combined (91%), or individually (82–100%). This signature was also predictive of response in a NSCLC study and to a lesser extent in RCC. The core of this signature is nine bacteria significantly increased in abundance in responders.ConclusionsAnalysis of the MELRESIST study samples, precision microbiome profiling by the Microbiotica Platform and a validated bioinformatic analysis, have enabled us to identify a unique microbiome signature predictive of response to ICI therapy in four independent melanoma studies. This removes the challenge to the field of different bacteria apparently being associated with response in different studies, and could represent a new microbiome biomarker with clinical application. Nine core bacteria may be driving response and hold potential for co-therapy with ICIs.Ethics ApprovalThe study was approved by Newcastle & North Tyneside 2 Research Ethics Committee, approval number 11/NE/0312.ReferencesMatson V, Fessler J, Bao R, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018;359(6371):104–108.Gopalakrishnan V, Spencer CN, Nezi L, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018;359(6371):97–103.Frankel AE, Coughlin LA, Kim J, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 2017;19(10):848–855.Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359(6371):91–97.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 66
Author(s):  
Zoltán László ◽  
Péter Pankovics ◽  
Gábor Reuter ◽  
Attila Cságola ◽  
Ádám Bálint ◽  
...  

Most picornaviruses of the family Picornaviridae are relatively well known, but there are certain “neglected” genera like Bopivirus, containing a single uncharacterised sequence (bopivirus A1, KM589358) with very limited background information. In this study, three novel picornaviruses provisionally called ovipi-, gopi- and bopivirus/Hun (MW298057-MW298059) from enteric samples of asymptomatic ovine, caprine and bovine respectively, were determined using RT-PCR and dye-terminator sequencing techniques. These monophyletic viruses share the same type II-like IRES, NPGP-type 2A, similar genome layout (4-3-4) and cre-localisations. Culture attempts of the study viruses, using six different cell lines, yielded no evidence of viral growth in vitro. Genomic and phylogenetic analyses show that bopivirus/Hun of bovine belongs to the species Bopivirus A, while the closely related ovine-origin ovipi- and caprine-origin gopivirus could belong to a novel species “Bopivirus B” in the genus Bopivirus. Epidemiological investigation of N = 269 faecal samples of livestock (ovine, caprine, bovine, swine and rabbit) from different farms in Hungary showed that bopiviruses were most prevalent among <12-month-old ovine, caprine and bovine, but undetectable in swine and rabbit. VP1 capsid-based phylogenetic analyses revealed the presence of multiple lineages/genotypes, including closely related ovine/caprine strains, suggesting the possibility of ovine–caprine interspecies transmission of certain bopiviruses.


2021 ◽  
Vol 9 (8) ◽  
pp. 1642
Author(s):  
Dorothee Tegtmeier ◽  
Sabine Hurka ◽  
Sanja Mihajlovic ◽  
Maren Bodenschatz ◽  
Stephanie Schlimbach ◽  
...  

Black soldier fly larvae (BSFL) are fast-growing, resilient insects that can break down a variety of organic substrates and convert them into valuable proteins and lipids for applications in the feed industry. Decomposition is mediated by an abundant and versatile gut microbiome, which has been studied for more than a decade. However, little is known about the phylogeny, properties and functions of bacterial isolates from the BSFL gut. We therefore characterized the BSFL gut microbiome in detail, evaluating bacterial diversity by culture-dependent methods and amplicon sequencing of the 16S rRNA gene. Redundant strains were identified by genomic fingerprinting and 105 non-redundant isolates were then tested for their ability to inhibit pathogens. We cultivated representatives of 26 genera, covering 47% of the families and 33% of the genera detected by amplicon sequencing. Among these isolates, we found several representatives of the most abundant genera: Morganella, Enterococcus, Proteus and Providencia. We also isolated diverse members of the less-abundant phylum Actinobacteria, and a novel genus of the order Clostridiales. We found that 15 of the isolates inhibited at least one of the tested pathogens, suggesting a role in helping to prevent colonization by pathogens in the gut. The resulting culture collection of unique BSFL gut bacteria provides a promising resource for multiple industrial applications.


2019 ◽  
Author(s):  
Eva Wikberg ◽  
Diana Christie ◽  
Pascale Sicotte ◽  
Nelson Ting

AbstractThe gut microbiome is structured by social groups in a variety of host taxa. Whether this pattern is driven by relatedness, similar diets, or shared social environments is under debate because few studies have had access to the data necessary to disentangle these factors in wild populations. We investigated whether diet, relatedness, or the 1-meter proximity network best explains differences in the gut microbiome among 45 female colobus monkeys in 8 social groups residing at Boabeng-Fiema, Ghana. We combined demographic and behavioural data collected May-August 2007 and October 2008-April 2009 with 16S rRNA sequencing of faecal samples collected during the latter part of each observation period. Social group identity explained a large percentage of the variation in gut microbiome beta-diversity. When comparing the predictive power of dietary dissimilarity, relatedness, and connectedness in the 1-meter proximity network, the models with social connectedness received the strongest support, even in our analyses that excluded within-group dyads. This novel finding indicates that microbes may be transmitted during intergroup encounters, which could occur either indirectly via shared environments or directly via social contact. Lastly, some of the gut microbial taxa that appear to be transmitted via 1-meter proximity are associated with digestion of plant material, but further research is needed to investigate whether this type of gut microbe transmission yields health benefits, which could provide an incentive for the formation and maintenance of social bonds within and between social groups.


mBio ◽  
2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yiqiao Bao ◽  
Andrew A. Verdegaal ◽  
Brent W. Anderson ◽  
Natasha A. Barry ◽  
Jing He ◽  
...  

The human intestine harbors a highly complex microbial community; interpersonal variation in this community can impact pathogen susceptibility, metabolism, and other aspects of health. Here, we identified and characterized a commensal-targeting antibacterial protein encoded in the gut microbiome.


Sign in / Sign up

Export Citation Format

Share Document