scholarly journals Plant Bioestimulants: Compost Tea and Bioslurry Characterization

2020 ◽  
Author(s):  
M. Iván Funes-Pinter ◽  
Gabriel Pisi ◽  
Matías Aroca ◽  
Laura Elizabeth Martínez ◽  
Marcela Fernández ◽  
...  

Abstract In the present study, the quality of aerated and non-aerated compost teas and bioslurry as bio-fertilizers and its application on two plant species in different substrates were tested. Compost tea brewed from a mixture residues compost presented higher nutrient content than that brewed from grape marc composted. Aeration, with shorter extraction time, resulted in higher pH, but in general with lower nutrient concentration, while bioslurry, presented higher nitrogen content. No pathogen and toxic effects were detected in the bio-products. Finally, Bio-products were evaluated in ornamental plant species: Petunia hibrida and Impatiens walleriana , where compost teas and bioslurry presented highly variable properties and effects on plant growth, depending on the substrate and species used. While in sand no significant effect on plant biomass and pigments were observed, in compost and commercial substrate bioslurry presented values similar to the traditional fertilizer. Compost tea presented variable results with no differences between aerated and non-aerated, both increasing carotenoids in I. walleriana in sand. We conclude that aeration showed no differences in compost tea quality, whilst bioslurry demonstrated to increase plant biomass at similar values to traditional fertilizer. Our results demonstrated that alternative products are an efficient, safe, ecological, and economical alternative to traditional products.

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 521D-521 ◽  
Author(s):  
Thomas C. Holt ◽  
Brian K. Maynard ◽  
William A. Johnson

We assessed the capacity for nutrient removal of ornamental water garden plants being grown in treatment-production wetland biofilters. Plant biomass, nutrient uptake, tissue nutrient content, and production potential were compared for five popular ornamental water garden plant species: Typha latifolia L., Iris pseudacorus L., Phalaris arundinacea L. `Picta', Canna glauca L., and Colocasia esculenta (L.) Schott. Plants were grown in triplicate 0.3 m2 × 0.3 m, deep gravelbed mesocosms fed with 20N-20P-20K Peter's fertilizer (Scotts-Sierra Horticultural Products Co., Marysville, Ohio) reconstituted to 100 ppm N. After 120 days, mean species total biomass ranged from 1.4 to 5.6 kg·m -2, while producing 105 to 206 divisions per square meter. Growth for Canna and Colocasia was greatest, while Typha produced the most divisions. Mean tissue N and P concentrations ranged from 18 to 29 and 2.1 to 3.0 mg·g -1, respectively. Maximum plant accumulation of 144 g N/m 2 and 15.6 g P/m2 accounted for 70% of the N and 15% of the P supplied by fertilizer. Mean removal of total N and P ranged from 42% to 90% and 18% to 58%, respectively, and was positively correlated with plant biomass. Nutrient removal ability was ranked as Canna = Colocasia > Typha > Iris = Phalaris.


Author(s):  
Shawna Holmes

This paper examines the changes to procurement for school food environments in Canada as a response to changes to nutrition regulations at the provincial level. Interviews with those working in school food environments across Canada revealed how changes to the nutrition requirements of foods and beverages sold in schools presented opportunities to not only improve the nutrient content of the items made available in school food environments, but also to include local producers and/or school gardens in procuring for the school food environment. At the same time, some schools struggle to procure nutritionally compliant foods due to increased costs associated with transporting produce to rural, remote, or northern communities as well as logistic difficulties like spoilage. Although the nutrition regulations have facilitated improvements to food environments in some schools, others require more support to improve the overall nutritional quality of the foods and beverages available to students at school.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 553
Author(s):  
Inga-Mareike Bach ◽  
Lisa Essich ◽  
Torsten Müller

Despite phosphorus resources on Earth being limited, over fertilization in many agricultural situations causes significant resource consumption. Phosphorus-recycling within agricultural production can reduce global dilution into the environment and is thus essential to secure sustainable future supply. This study investigated the fertilization efficacy of phosphorus fertilizers recycled from biogas digestates in maize shoots grown under controlled greenhouse conditions, in two soils, in a pot experiment. Variables investigated were plant-available phosphorus in soil, plant biomass production, and concentration of phosphorus, calcium, and magnesium in shoots. Soils were treated with three different fertilizer fractions, separated from biogas digestates, at equivalent phosphorus concentrations, using different combinations and application techniques, isolated or in combination, and compared to triple superphosphate (TSP) as a reference. One of the fractions (P-Salt) had effects on biomass production and plant phosphorus concentration equivalent to TSP in agricultural surface soil. In the second soil (with less active soil life and nutrient content), equivalence to TSP was achieved with combinations of two recycled fractions (P-Salt and dried solids). The enhancement of the phosphorus fertilizing effect by the solids was synergistic, indicating that the solids had a soil conditioning effect. The results show that biogas digestates are a valuable source for phosphorus recycling of fractions that have equivalent or even superior fertilizing properties compared to TSP.


2021 ◽  
Vol 11 (10) ◽  
pp. 4392
Author(s):  
Apolka Ujj ◽  
Kinga Percsi ◽  
Andras Beres ◽  
Laszlo Aleksza ◽  
Fernanda Ramos Diaz ◽  
...  

The use and quality analysis of household compost have become very important issues in recent years due to the increasing interest in local food production and safe, self-produced food. The phenomenon was further exacerbated by the COVID-19 pandemic quarantine period, which gave new impetus to the growth of small home gardens. However, the knowledge associated with making high-quality compost is often lacking in home gardeners. Therefore, the objective of this research was to find answers to the following questions: can the quality of backyard compost be considered safe in terms of toxicity and nutrient content? Can weed seed dispersion affect the usability of backyard compost? In general, can the circulation of organic matter be increased with the spread of home composting? In this study, 16 different house composts were analysed for stability, weed seed contamination, toxic elements, and nutrient content using analysis of variance. The results of the research showed that the quality properties of the composts (including their weed seed dispersion effect) were greatly influenced by the different techniques and raw materials used. The toxicity levels, as well as the content of macro and microelements, were within the parameters of safe-quality compost. The specific macronutrient (Ca, Mg) and micronutrient (Fe, Mn) contents of the tested composts have a similar and, in some cases, more favorable nutrient supply capacity in crop production than the frequently-used cow manure-based composts. With a plan of basic education on composting, there is potential to encourage farmyard composting.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 223
Author(s):  
Dāvis Ozoliņš ◽  
Agnija Skuja ◽  
Jolanta Jēkabsone ◽  
Ilga Kokorite ◽  
Andris Avotins ◽  
...  

Highly humic lakes are typical for the boreal zone. These unique ecosystems are characterised as relatively undisturbed habitats with brown water, high acidity, low nutrient content and lack of macrophytes. Current lake assessment methods are not appropriate for ecological assessment of highly humic lakes because of their unique properties and differing human pressures acting on these ecosystems. This study proposes a new approach suitable for the ecological status assessment of highly humic lakes impacted by hydrological modifications. Altogether, 52 macroinvertebrate samples from 15 raised bog lakes were used to develop the method. The studied lakes are located in the raised bogs at the central and eastern parts of Latvia. Altered water level was found as the main threat to the humic lake habitats since no other pressures were established. A multimetric index based on macroinvertebrate abundance, littoral and profundal preferences, Coleoptera taxa richness and the Biological Monitoring Working Party (BMWP) Score is suggested as the most suitable tool to assess the ecological quality of the highly humic lakes.


Oecologia ◽  
2021 ◽  
Vol 195 (1) ◽  
pp. 213-223
Author(s):  
Mark A. Lee ◽  
Grace Burger ◽  
Emma R. Green ◽  
Pepijn W. Kooij

AbstractPlant and animal community composition changes at higher elevations on mountains. Plant and animal species richness generally declines with elevation, but the shape of the relationship differs between taxa. There are several proposed mechanisms, including the productivity hypotheses; that declines in available plant biomass confers fewer resources to consumers, thus supporting fewer species. We investigated resource availability as we ascended three aspects of Helvellyn mountain, UK, measuring several plant nutritive metrics, plant species richness and biomass. We observed a linear decline in plant species richness as we ascended the mountain but there was a unimodal relationship between plant biomass and elevation. Generally, the highest biomass values at mid-elevations were associated with the lowest nutritive values, except mineral contents which declined with elevation. Intra-specific and inter-specific increases in nutritive values nearer the top and bottom of the mountain indicated that physiological, phenological and compositional mechanisms may have played a role. The shape of the relationship between resource availability and elevation was different depending on the metric. Many consumers actively select or avoid plants based on their nutritive values and the abundances of consumer taxa vary in their relationships with elevation. Consideration of multiple nutritive metrics and of the nutritional requirements of the consumer may provide a greater understanding of changes to plant and animal communities at higher elevations. We propose a novel hypothesis for explaining elevational diversity gradients, which warrants further study; the ‘nutritional complexity hypothesis’, where consumer species coexist due to greater variation in the nutritional chemistry of plants.


2021 ◽  
Vol 43 (4) ◽  
Author(s):  
Liping Zhang ◽  
Menghan Li ◽  
Xin Li ◽  
Peng Yan ◽  
Lan Zhang ◽  
...  

1986 ◽  
Vol 64 (12) ◽  
pp. 2993-2998 ◽  
Author(s):  
Steven F. Oberbauer ◽  
Nasser Sionit ◽  
Steven J. Hastings ◽  
Walter C. Oechel

Three Alaskan tundra species, Carex bigelowii Torr., Betula nana L., and Ledum palustre L., were grown in controlled-environment chambers at two nutrition levels with two concentrations of atmospheric CO2 to assess the interactive effects of these factors on growth, photosynthesis, and tissue nutrient content. Carbon dioxide concentrations were maintained at 350 and 675 μL L−1 under photosynthetic photon flux densities of 450 μmol m−2 s−1 and temperatures of 20:15 °C (light:dark). Nutrient treatments were obtained by watering daily with 1/60- or 1/8- strength Hoagland's solution. Leaf, root, and total biomass were strongly enhanced by nutrient enrichment regardless of the CO2 concentration. In contrast, enriched atmospheric CO2 did not significantly affect plant biomass and there was no interaction between nutrition and CO2 concentration during growth. Leaf photosynthesis was increased by better nutrition in two species but was unchanged by CO2 enrichment during growth in all three species. The effects of nutrient addition and CO2 enrichment on tissue nutrient concentrations were complex and differed among the three species. The data suggest that CO2 enrichment with or without nutrient limitation has little effect on the biomass production of these three tundra species.


2017 ◽  
Vol 100 (3) ◽  
pp. 744-752 ◽  
Author(s):  
Yajun Wu ◽  
Yange Yang ◽  
Mingchang Liu ◽  
Bin Wang ◽  
Meige Li ◽  
...  

Abstract The quality of honey is significantly influenced by floralorigin. Mislabeling floral species occurs frequently in bee honey products. To protect consumers from economic fraud and maintain a fair market environment, methods to identify floralspecies in honey are necessary. In our study, real-time PCRs were established, targeting six honey types mainly produced in China (canola, Chinese milkvetch, Chinese chaste tree, locust tree, litchi, and longan). Sensitivity testing on DNA fromplant tissues exhibited LODs of about 0.5–5 pg/μL. For DNA extracts of pollen sediments from different honeyspecies, LODs ranged from 13.6 to 403.2 pg/μL. In an experiment to determine the practical LODs of honey in which adulterant honey was spiked in the genuine honey, adulterant honey as low as about 0.1–0.5% was detected in 90–100% in 10 parallel tests. Additionally, pollen was spiked in the honey and stored under various conditions to investigate the migration of pollen DNA into the honey supernatant. Finally, the efficiency of our method was investigated by testing honey samples of unknown compositions from different geographic regions. Of the 159 honey samples that were supposed tobe monofloral that had been collected in five provinces, a small portion were found to be contaminated with foreign pollen(7%). The methods proved to be specific, sensitive, and reliable in identifying the six plant species in honey, which would be a useful tool during the market supervision and QC of honey products.


Sign in / Sign up

Export Citation Format

Share Document