scholarly journals A Precise Carbon and Oxygen Abundance Determination in a Hot Jupiter Atmosphere

Author(s):  
Michael Line ◽  
Matteo Brogi ◽  
Jacob Bean ◽  
Siddharth Gandhi ◽  
Joseph Zalesky ◽  
...  

Abstract The origins of gas giant planets orbiting close to their host stars (``hot Jupiters'') remain a mystery despite more than a quarter-century of study (Fortney et al. 2021). The atmospheric compositions of these planets are highly sought after to provide insight to their formation location in protoplanetary disks, how they migrated to be so close to their host stars, and the relative role of solid versus gas accretion during their assembly (Madhusudhan 2019). However, simultaneous, bounded constraints on both carbon and oxygen abundances, which are key for understanding giant planet formation (Oeberg et al. 2011, Mordasini et al. 2016, Madhusudhan et al. 2017,Cridland et al. 2016), have been elusive (Kreidberg et al. 2014,Wakeford et al. 2018,Pelletier et al. 2021). Here, we report precise abundance measurements of both water and carbon monoxide in a hot Jupiter atmosphere via ground-based, high resolution spectroscopy. From these constraints on the primary carbon- and oxygen-bearing molecules, paired with upper limits on other minor volatile elemental carriers, we are able to derive the atmospheric elemental metal enrichment (metallicity) and the carbon-to-oxygen ratio (C/O). The inferred atmospheric metallicity is slightly sub-stellar (-0.48$+0.15/-0.13) and the C/O is consistent with stellar (0.59 ±0.08). The former is suggestive of a metal-depleted atmosphere relative to expectations based on extrapolation from the solar system, indicative of a greater partitioning of metals within the core vs the atmosphere. The C/O constraint rules out gas-dominated accretion followed by disk free migration. Taken together in the context of past inferences, these results point to a diversity of planetary atmospheric compositions in addition to the observed diversity of planetary system architectures.

2020 ◽  
Author(s):  
Monika Stangret ◽  
Núria Casasayas-Barris ◽  
Enric Palle ◽  
Fei Yan ◽  
Alejandro Sánchez-López ◽  
...  

<p>Thanks to the different Doppler velocities of the Earth, the host star and the planet using high-resolution spectroscopy we are able to detect and characterise exoplanetary atmospheres. Exoplanetary signal is buried in the residual noise, however by preforming cross-correlation of atmospheric transmission model and hundreds of atmospheric lines the signal can be increase. Studying the atmospheres of ultra-hot Jupiters, objects with the temperature higher than 2200K which orbit close to their host stars, gives us great laboratory to study chemistry of the exoplanets. MASCARA-2b also known as KELT-20b with the temperature of 2230 K is a perfect example of ultra hot Jupiter. We studied this object using three transit observations obtained with HARPS-North. Using cross-correlation method we detected strong absorption of Fe I and FeII, which agrees with theoretical models. Additionally, because of the fast rotation of the star, the crosscorrelation residuals show strong Rossiter-MacLaughlin effect.</p>


2019 ◽  
Vol 490 (1) ◽  
pp. 1094-1110 ◽  
Author(s):  
Diana Kossakowski ◽  
Néstor Espinoza ◽  
Rafael Brahm ◽  
Andrés Jordán ◽  
Thomas Henning ◽  
...  

Abstract We present the discovery of TYC9191-519-1b (TOI-150b, TIC 271893367) and HD271181b (TOI-163b, TIC 179317684), two hot Jupiters initially detected using 30-min cadence Transiting Exoplanet Survey Satellite (TESS) photometry from Sector 1 and thoroughly characterized through follow-up photometry (CHAT, Hazelwood, LCO/CTIO, El Sauce, TRAPPIST-S), high-resolution spectroscopy (FEROS, CORALIE), and speckle imaging (Gemini/DSSI), confirming the planetary nature of the two signals. A simultaneous joint fit of photometry and radial velocity using a new fitting package juliet reveals that TOI-150b is a $1.254\pm 0.016\ \rm {R}_ \rm{J}$, massive ($2.61^{+0.19}_{-0.12}\ \rm {M}_ \rm{J}$) hot Jupiter in a 5.857-d orbit, while TOI-163b is an inflated ($R_ \rm{P}$ = $1.478^{+0.022}_{-0.029} \,\mathrm{ R}_ \rm{J}$, $M_ \rm{P}$ = $1.219\pm 0.11 \, \rm{M}_ \rm{J}$) hot Jupiter on a P = 4.231-d orbit; both planets orbit F-type stars. A particularly interesting result is that TOI-150b shows an eccentric orbit ($e=0.262^{+0.045}_{-0.037}$), which is quite uncommon among hot Jupiters. We estimate that this is consistent, however, with the circularization time-scale, which is slightly larger than the age of the system. These two hot Jupiters are both prime candidates for further characterization – in particular, both are excellent candidates for determining spin-orbit alignments via the Rossiter–McLaughlin (RM) effect and for characterizing atmospheric thermal structures using secondary eclipse observations considering they are both located closely to the James Webb Space Telescope (JWST) Continuous Viewing Zone (CVZ).


2019 ◽  
Vol 622 ◽  
pp. A156 ◽  
Author(s):  
G. Cugno ◽  
S. P. Quanz ◽  
S. Hunziker ◽  
T. Stolker ◽  
H. M. Schmid ◽  
...  

Context. In recent years, our understanding of giant planet formation progressed substantially. There have even been detections of a few young protoplanet candidates still embedded in the circumstellar disks of their host stars. The exact physics that describes the accretion of material from the circumstellar disk onto the suspected circumplanetary disk and eventually onto the young, forming planet is still an open question. Aims. We seek to detect and quantify observables related to accretion processes occurring locally in circumstellar disks, which could be attributed to young forming planets. We focus on objects known to host protoplanet candidates and/or disk structures thought to be the result of interactions with planets. Methods. We analyzed observations of six young stars (age 3.5–10 Myr) and their surrounding environments with the SPHERE/ZIMPOL instrument on the Very Large Telescope (VLT) in the Hα filter (656 nm) and a nearby continuum filter (644.9 nm). We applied several point spread function (PSF) subtraction techniques to reach the highest possible contrast near the primary star, specifically investigating regions where forming companions were claimed or have been suggested based on observed disk morphology. Results. We redetect the known accreting M-star companion HD142527 B with the highest published signal to noise to date in both Hα and the continuum. We derive new astrometry (r=62.8−2.7+2.1 mas and PA=(98.7±1.8)°) and photometry (ΔN_Ha = 6.3−0.3+0.2 mag, ΔB_Ha = 6.7 ± 0.2 mag and ΔCnt_Ha = 7.3−0.2+0.3 mag) for the companion in agreement with previous studies, and estimate its mass accretion rate (Ṁ ≈ 1−2 × 10−10 M⊙yr−1). A faint point-like source around HD135344 B (SAO206462) is also investigated, but a second deeper observation is required to reveal its nature. No other companions are detected. In the framework of our assumptions we estimate detection limits at the locations of companion candidates around HD100546, HD169142, and MWC 758 and calculate that processes involving Hα fluxes larger than ~ 8 × 10−14–10−15 erg s−1 cm−2 (Ṁ > 10−10−10−12 M⊙yr−1) can be excluded. Furthermore, flux upper limits of ~10−14−10−15 erg s−1 cm−2 (Ṁ < 10−11–10−12 M⊙yr−1) are estimated within the gaps identified in the disks surrounding HD135344 B and TW Hya. The derived luminosity limits exclude Hα signatures at levels similar to those previously detected for the accreting planet candidate LkCa15 b.


Author(s):  
Dmitry V. Bisikalo ◽  
Pavel V. Kaygorodov ◽  
Valery I. Shematovich

The history of exoplanetary atmospheres studies is strongly based on the observations and investigations of the gaseous envelopes of hot Jupiters—exoplanet gas giants that have masses comparable to the mass of Jupiter and orbital semi-major axes shorter than 0.1 AU. The first exoplanet around a solar-type star was a hot Jupiter discovered in 1995. Researchers found an object that had completely atypical parameters compared to planets known in the solar system. According to their estimates, the object might have a mass about a half of the Jovian mass and a very short orbital period (four days), which means that it has an orbit roughly corresponding to the orbit of Mercury. Later, many similar objects were discovered near different stars, and they acquired a common name—hot Jupiters. It is still unclear what the mechanism is for their origin, because generally accepted theories of planetary evolution predict the formation of giant planets only at large orbital distances, where they can accrete enough matter before the protoplanetary disc disappears. If this is true, before arriving at such low orbits, hot Jupiters might have a long migration path, caused by interactions with other massive planets and/or with the gaseous disc. In favor of this model is the discovery of many hot Jupiters in elliptical and highly inclined orbits, but on the other hand several observed hot Jupiters have circular orbits with low inclination. An alternative hypothesis is that the cores of future hot Jupiters are super-Earths that may later intercept matter from the protoplanetary disk falling on the star. The scientific interest in hot Jupiters has two aspects. The first is the peculiarity of these objects: they have no analogues in the solar system. The second is that, until recently, only for hot Jupiters was it possible to obtain observational characteristics of their atmospheres. Many of the known hot Jupiters are eclipsing their host stars, so, from their light curve and spectral data obtained during an eclipse, it became possible to obtain information about their shape and their atmospheric composition. Thus it is possible to conclude that hot Jupiters are a common type of exoplanet, having no analogues in the solar system. Many aspects of their evolution and internal structure remain unclear. Being very close to their host stars, hot Jupiters must interact with the stellar wind and stellar magnetic field, as well as with stellar flares and coronal mass ejections, allowing researchers to gather information about them. According to UV observations, at least a fraction of hot Jupiters have extended gaseous envelopes, extending far beyond of their upper atmospheres. The envelopes are observable with current astronomical instruments, so it is possible to develop their astrophysical models. The history of hot Jupiter atmosphere studies during the past 20 years and the current status of modern theories describing the extended envelopes of hot Jupiters are excellent examples of the progress in understanding planetary atmospheres formation and evolution both in the solar system and in the extrasolar planetary systems.


2010 ◽  
Vol 6 (S276) ◽  
pp. 475-476
Author(s):  
Brice-Olivier Demory ◽  
Sara Seager

AbstractHot-Jupiters are known to be dark in visible bandpasses, mainly because of the alkali metal absorption lines and TiO and VO molecular absorption bands. The outstanding quality of the Kepler mission photometry allows a detection (or non-detection upper limits on) giant planet secondary eclipses at visible wavelengths. We present such measurements on published planets from Kepler Q1 data. We then explore how to disentangle between the planetary thermal emission and the reflected light components that can both contribute to the detected signal in the Kepler bandpass. We finally mention how different physical processes can lead to a wide variety of hot-Jupiters albedos.


2013 ◽  
Vol 8 (S299) ◽  
pp. 386-390
Author(s):  
Rebekah I. Dawson ◽  
Ruth A. Murray-Clay ◽  
John Asher Johnson

AbstractIt was once widely believed that planets formed peacefully in situ in their proto-planetary disks and subsequently remain in place. Instead, growing evidence suggests that many giant planets undergo dynamical rearrangement that results in planets migrating inward in the disk, far from their birthplaces. However, it remains debated whether this migration is caused by smooth planet-disk interactions or violent multi-body interactions. Both classes of model can produce Jupiter-mass planets orbiting within 0.1 AU of their host stars, also known as hot Jupiters. In the latter class of model, another planet or star in the system perturbs the Jupiter onto a highly eccentric orbit, which tidal dissipation subsequently shrinks and circularizes during close passages to the star. We assess the prevalence of smooth vs. violent migration through two studies. First, motivated by the predictions of Socrates et al. (2012), we search for super-eccentric hot Jupiter progenitors by using the “photoeccentric effect” to measure the eccentricities of Kepler giant planet candidates from their transit light curves. We find a significant lack of super- eccentric proto-hot Jupiters compared to the number expected, allowing us to place an upper limit on the fraction of hot Jupiters created by stellar binaries. Second, if both planet-disk and multi-body interactions commonly cause giant planet migration, physical properties of the proto-planetary environment may determine which is triggered. We identify three trends in which giant planets orbiting metal rich stars show signatures of planet-planet interactions: (1) gas giants orbiting within 1 AU of metal-rich stars have a range of eccentricities, whereas those orbiting metal- poor stars are restricted to lower eccentricities; (2) metal-rich stars host most eccentric proto-hot Jupiters undergoing tidal circularization; and (3) the pile-up of short-period giant planets, missing in the Kepler sample, is a feature of metal-rich stars and is largely recovered for giants orbiting metal-rich Kepler host stars. These two studies suggest that both disk migration and planet-planet interactions may be widespread, with the latter occurring primarily in metal-rich planetary systems where multiple giant planets can form. Funded by NSF-GRFP DGE-1144152.


2013 ◽  
Vol 9 (S302) ◽  
pp. 239-242
Author(s):  
K. Poppenhaeger ◽  
S. J. Wolk

AbstractIt is a long-standing question in exoplanet research if Hot Jupiters can influence the magnetic activity of their host stars. While cool stars usually spin down with age and become inactive, an input of angular momentum through tidal interaction, as seen for example in close binaries, can preserve high activity levels over time. This may also be the case for cool stars hosting a Hot Jupiter. However, selection effects from planet detection methods often dominate the activity levels seen in samples of exoplanet host stars, and planet-induced, systematically enhanced stellar activity has not been detected unambiguously so far. We have developed an approach to identify planet-induced stellar spin-up avoiding the selection biases from planet detection, by using visual proper motion binaries in which only one of the stars possesses a Hot Jupiter. This approach immediately rids one of the ambiguities of detection biases: with two co-eval stars, the second star acts as a negative control. We present results from our ongoing observational campaign at X-ray wavelengths and in the optical, and present several outstanding systems which display significant age/activity discrepancies presumably caused by their Hot Jupiters.


2021 ◽  
Author(s):  
Monika Stangret ◽  
Enric Palle ◽  
Núria Casasayas-Barris ◽  
Mahmoud Oshagh

&lt;p&gt;Ultra-hot Jupiters are defined as giant planets with equilibrium temperatures larger than 2000 K. Most of them are found orbiting bright A-F stars, making them extremely suitable object to study their atmospheres using high-resolution spectroscopy.&lt;/p&gt; &lt;p&gt;TOI-1431b, also known as MASCARA-5b, a newly discovered planet with the temperature of 2375 K is a prefect example of ultra-hot Jupiter. We studied this object using three transit observations obtained with high-resolution spectrographs HARPS-N and EXPRES. Analysis of Rossiter-McLaughlin effect shows that the planet is in the polar orbit, which speaks about an interesting dynamical history, and perhaps indicating the presence of more than one planet in the early history of this system. Applying the cross-correlation and transmission spectroscopy method, we find no evidence of atoms and molecules in this planet. There results are at odds with the other studies of similar UHJs orbiting bright stars, where various species have been found.&lt;/p&gt;


2019 ◽  
Vol 486 (2) ◽  
pp. 2265-2280 ◽  
Author(s):  
Jean Teyssandier ◽  
Dong Lai ◽  
Michelle Vick

Abstract The population of giant planets on short-period orbits can potentially be explained by some flavours of high-eccentricity migration. In this paper, we investigate one such mechanism involving ‘secular chaos’, in which secular interactions between at least three giant planets push the inner planet to a highly eccentric orbit, followed by tidal circularization and orbital decay. In addition to the equilibrium tidal friction, we incorporate dissipation due to dynamical tides that are excited inside the giant planet. Using the method of Gaussian rings to account for planet–planet interactions, we explore the conditions for extreme eccentricity excitation via secular chaos and the properties of hot Jupiters formed in this migration channel. Our calculations show that once the inner planet reaches a sufficiently large eccentricity, dynamical tides quickly dissipate the orbital energy, producing an eccentric warm Jupiter, which then decays in semimajor axis through equilibrium tides to become a hot Jupiter. Dynamical tides help the planet avoid tidal disruption, increasing the chance of forming a hot Jupiter, although not all planets survive the process. We find that the final orbital periods generally lie in the range of 2–3 d, somewhat shorter than those of the observed hot Jupiter population. We couple the planet migration to the stellar spin evolution to predict the final spin-orbit misalignments. The distribution of the misalignment angles we obtain shows a lack of retrograde orbits compared to observations. Our results suggest that high-eccentricity migration via secular chaos can only account for a fraction of the observed hot Jupiter population.


2020 ◽  
Vol 499 (2) ◽  
pp. 2229-2244
Author(s):  
Shota Notsu ◽  
Christian Eistrup ◽  
Catherine Walsh ◽  
Hideko Nomura

ABSTRACT The radial-dependent positions of snowlines of abundant oxygen- and carbon-bearing molecules in protoplanetary discs will result in systematic radial variations in the carbon-to-oxygen (C/O) ratios in the gas and ice. This variation is proposed as a tracer of the formation location of gas-giant planets. However, disc chemistry can affect the C/O ratios in the gas and ice, thus potentially erasing the chemical fingerprint of snowlines in gas-giant atmospheres. We calculate the molecular composition of hot Jupiter atmospheres using elemental abundances extracted from a chemical kinetics model of a disc mid-plane, where we have varied the initial abundances and ionization rates. The models predict a wider diversity of possible atmospheres than those predicted using elemental ratios from snowlines only. As found in previous work, as the C/O ratio exceeds the solar value, the mixing ratio of CH4 increases in the lower atmosphere, and those of C2H2 and HCN increase mainly in the upper atmosphere. The mixing ratio of H2O correspondingly decreases. We find that hot Jupiters with C/O &gt; 1 can only form between the CO2 and CH4 snowlines. Moreover, they can only form in a disc which has fully inherited interstellar abundances, and where negligible chemistry has occurred. Hence, carbon-rich planets are likely rare, unless efficient transport of hydrocarbon-rich ices via pebble drift to within the CH4 snowline is a common phenomenon. We predict combinations of C/O ratios and elemental abundances that can constrain gas-giant planet formation locations relative to snowline positions, and that can provide insight into the disc chemical history.


Sign in / Sign up

Export Citation Format

Share Document